Holesky Testnet

Contract

0x1ebb7eA7429F6e3A18a69C792a059FB36F08562E

Overview

ETH Balance

0.006120988471679677 ETH

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Transfer19819372024-07-22 23:10:36186 days ago1721689836IN
0x1ebb7eA7...36F08562E
0.00294031 ETH00
Transfer19713082024-07-21 8:55:12188 days ago1721552112IN
0x1ebb7eA7...36F08562E
0.00209701 ETH00
Transfer16682662024-06-04 5:45:12235 days ago1717479912IN
0x1ebb7eA7...36F08562E
0.00429388 ETH0.0000581.10847605

Latest 7 internal transactions

Advanced mode:
Parent Transaction Hash Block
From
To
19819372024-07-22 23:10:36186 days ago1721689836
0x1ebb7eA7...36F08562E
0.00088209 ETH
19819372024-07-22 23:10:36186 days ago1721689836
0x1ebb7eA7...36F08562E
0.00205822 ETH
19713082024-07-21 8:55:12188 days ago1721552112
0x1ebb7eA7...36F08562E
0.0006291 ETH
19713082024-07-21 8:55:12188 days ago1721552112
0x1ebb7eA7...36F08562E
0.0014679 ETH
16682662024-06-04 5:45:12235 days ago1717479912
0x1ebb7eA7...36F08562E
0.00593736 ETH
16682662024-06-04 5:45:12235 days ago1717479912
0x1ebb7eA7...36F08562E
0.01385385 ETH
13059972024-04-08 12:38:12292 days ago1712579892  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x5c45301f1936711f095cab8c0e366ad7826db431

Contract Name:
Splitter

Compiler Version
v0.8.22+commit.4fc1097e

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 6 : Splitter.sol
// SPDX-License-Identifier: BUSL-1.1
// SPDX-FileCopyrightText: 2024 Kiln <[email protected]>
//
// ██╗  ██╗██╗██╗     ███╗   ██╗
// ██║ ██╔╝██║██║     ████╗  ██║
// █████╔╝ ██║██║     ██╔██╗ ██║
// ██╔═██╗ ██║██║     ██║╚██╗██║
// ██║  ██╗██║███████╗██║ ╚████║
// ╚═╝  ╚═╝╚═╝╚══════╝╚═╝  ╚═══╝
//
pragma solidity 0.8.22;

import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {Operator} from "./Operator.sol";

/// @title Splitter
/// @notice The Splitter contract is used to directly split any funds it receives between its owner and linked Operator
contract Splitter {
    /// @notice The Operator contract that will receive a portion of the funds
    Operator public operator;

    /// @notice The owner of the contract
    address public owner;

    /// @notice The maximum value for a percentage in bps
    uint256 internal constant MAX_BPS = 10000;

    /// @notice Emitted when the contract is configured
    /// @param operator The Operator contract that will receive a portion of the funds
    /// @param owner The owner of the contract
    event Configured(address indexed operator, address indexed owner);

    /// @notice Emitted when the received funds are split
    /// @param operator The operator of the contract
    /// @param recipient The recipient of the funds
    /// @param operatorAmount The amount of funds that were sent to the operator
    /// @param recipientAmount The amount of funds that were sent to the recipient
    event Split(address indexed operator, address indexed recipient, uint256 operatorAmount, uint256 recipientAmount);

    /// @notice Emitted when the transfer to the owner fails and we explicitly do not revert
    /// @param errorData The error data returned by the transfer
    event OwnerTransferFailureCaught(bytes errorData);

    /// @notice Thrown when the contract is already initialized
    error AlreadyInitialized();

    /// @notice Thrown when the sender is not the owner
    /// @param sender The sender of the transaction
    error Unauthorized(address sender);

    /// @notice Thrown when the transfer to the owner fails
    /// @param recipient The recipient of the transfer
    /// @param errorData The error data returned by the transfer
    error OwnerTransferFailed(address recipient, bytes errorData);

    /// @notice Thrown when the transfer to the operator fails
    /// @param errorData The error data returned by the transfer
    error OperatorTransferFailed(bytes errorData);

    /// @notice Thrown when the provided address is zero
    error InvalidZeroAddress();

    /// @notice Thrown when the provided operator address is not a contract
    error InvalidOperatorAddress();

    /// @notice Thrown when the initialization is performed more than once
    modifier uninitialized() {
        if (address(operator) != address(0) || address(owner) != address(0)) {
            revert AlreadyInitialized();
        }
        _;
    }

    constructor() {
        operator = Operator(payable(address(uint160(uint256(bytes32("implem initialized"))))));
    }

    /// @notice The receive function is used to receive ETH
    receive() external payable {
        _split(owner, false);
    }

    /// @notice The fallback function is used to receive ETH when there is additional calldata
    fallback() external payable {
        _split(owner, false);
    }

    /// @notice Initializes the contract
    /// @param _operator The Operator contract that will receive a portion of the funds
    /// @param _owner The owner of the contract
    function init(Operator _operator, address _owner) external uninitialized {
        if (address(_operator) == address(0) || address(_owner) == address(0)) {
            revert InvalidZeroAddress();
        }
        if (address(_operator).code.length == 0) {
            revert InvalidOperatorAddress();
        }
        operator = _operator;
        owner = _owner;
        emit Configured(address(_operator), _owner);
    }

    /// @notice Claims the funds from the contract
    function claim() external {
        _split(owner, true);
    }

    /// @notice Claims the funds from the contract and sends them to the provided recipient
    /// @param recipient The recipient of the funds
    function claim(address recipient) external {
        if (msg.sender != owner) {
            revert Unauthorized(msg.sender);
        }
        _split(recipient, true);
    }

    /// @notice Claims the funds from the contract and sends them to the provided recipients
    /// @param recipient The recipient that receives the funds for the owner
    function _split(address recipient, bool revertOnTransferFail) internal {
        uint256 balance = address(this).balance;
        if (balance == 0) {
            return;
        }
        uint256 operatorFee = operator.operatorFee();
        uint256 operatorAmount = operatorFee > 0 ? Math.mulDiv(balance, operatorFee, MAX_BPS) : 0;
        uint256 ownerAmount = balance - operatorAmount;
        (bool success, bytes memory rdata) = recipient.call{value: ownerAmount}("");
        if (!success) {
            if (revertOnTransferFail) {
                revert OwnerTransferFailed(recipient, rdata);
            } else {
                emit OwnerTransferFailureCaught(rdata);
                return;
            }
        }
        (success, rdata) = address(operator).call{value: operatorAmount}("");
        if (!success) {
            revert OperatorTransferFailed(rdata);
        }
        emit Split(address(operator), recipient, operatorAmount, ownerAmount);
    }
}

File 2 of 6 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 3 of 6 : Operator.sol
// SPDX-License-Identifier: BUSL-1.1
// SPDX-FileCopyrightText: 2024 Kiln <[email protected]>
//
// ██╗  ██╗██╗██╗     ███╗   ██╗
// ██║ ██╔╝██║██║     ████╗  ██║
// █████╔╝ ██║██║     ██╔██╗ ██║
// ██╔═██╗ ██║██║     ██║╚██╗██║
// ██║  ██╗██║███████╗██║ ╚████║
// ╚═╝  ╚═╝╚═╝╚══════╝╚═╝  ╚═══╝
//
pragma solidity 0.8.22;

import {Ownable, Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

/// @title Operator
/// @notice The Operator contract is used to store a commission distribution scheme for one or several Splitter instances
/// @notice It stores a list of recipients alongside their respective percentages, and a fee that is taken on each Splitter
/// @notice It then handles the dispatching of the commission between the configured recipient
contract Operator is Ownable2Step {
    /// @notice The fee that is taken on each Splitter
    uint256 public operatorFee;

    /// @notice The maximum fee that can be configured on the Operator
    // solhint-disable-next-line immutable-vars-naming
    uint256 public immutable maximumOperatorFee;

    /// @notice The list of recipients
    address[] public recipients;

    /// @notice The list of percentages for each recipient
    uint256[] public percents;

    /// @notice The name of the operator
    string public name;

    /// @notice The maximum value for a percentage in bps
    uint256 internal constant MAX_BPS = 10000;

    /// @notice Emitted when the recipients are updated
    /// @param recipients The new list of recipients
    /// @param percentsBps The new list of percentages
    event UpdatedRecipients(address[] recipients, uint256[] percentsBps);

    /// @notice Emitted when the operator fee is updated
    /// @param operatorFee The new operator fee
    event UpdatedOperatorFee(uint256 operatorFee);

    /// @notice Emitted when the operator name is updated
    /// @param name The new operator name
    event UpdatedOperatorName(string name);

    /// @notice Emitted when the maximum operator fee is updated
    /// @param maximumOperatorFee The new maximum operator fee
    event UpdatedMaximumOperatorFee(uint256 maximumOperatorFee);

    /// @notice Emitted when the commission is claimed
    /// @param amount The amount that was claimed
    event Claimed(uint256 amount);

    /// @notice Thrown when the provided recipient list is empty
    error NoRecipients();

    /// @notice Thrown when the provided recipient is null
    error ZeroAddress();

    /// @notice Thrown when the provided percent value is zero
    error ZeroPercentBps();

    /// @notice Thrown when the transfer to a recipient fails
    /// @param recipient The recipient that failed to receive the funds
    /// @param errorData The error data returned by the transfer
    error RecipientTransferFailed(address recipient, bytes errorData);

    /// @notice Thrown when the provided recipient list is empty
    error EmptyRecipientArguments();

    /// @notice Thrown when the provided recipient list and percentage list have different lengths
    error InvalidArgumentLengths();

    /// @notice Thrown when the provided percentages do not sum up to 10000
    error InvalidPercentSum();

    /// @notice Thrown when the provided fee is invalid
    /// @param feeBps The provided fee
    error InvalidFeeBps(uint256 feeBps);

    /// @notice Thrown when the provided name is empty
    error InvalidEmptyString();

    /// @notice Thrown when the provided recipients are not sorted
    error InvalidUnsortedRecipients();

    /// @param _owner The owner of the contract
    /// @param _operatorFee The fee that is taken on each Splitter
    /// @param _recipients The list of recipients, sorted in ascending order without duplicates
    /// @param _percents The list of percentages for each recipient
    constructor(
        address _owner,
        string memory _name,
        uint256 _operatorFee,
        uint256 _maximumOperatorFee,
        address[] memory _recipients,
        uint256[] memory _percents
    ) Ownable(_owner) {
        if (_maximumOperatorFee > MAX_BPS) {
            revert InvalidFeeBps(_maximumOperatorFee);
        }
        maximumOperatorFee = _maximumOperatorFee;
        emit UpdatedMaximumOperatorFee(_maximumOperatorFee);

        _setOperatorFee(_operatorFee);
        _setRecipients(_recipients, _percents);
        _setName(_name);
    }

    /// @notice The receive function is used to receive ETH
    receive() external payable {
        // do nothing
    }

    /// @notice The fallback function is used to receive ETH when there is additional calldata
    fallback() external payable {
        // do nothing
    }

    /// @notice Changes the operator fee
    /// @param _operatorFee The new operator fee
    function setOperatorFee(uint256 _operatorFee) external onlyOwner {
        _setOperatorFee(_operatorFee);
    }

    /// @notice Changes the recipients and their respective percentages
    /// @param _recipients The new list of recipients, sorted in ascending order without duplicates
    /// @param _percents The new list of percentages
    function setRecipients(address[] calldata _recipients, uint256[] calldata _percents) external onlyOwner {
        _setRecipients(_recipients, _percents);
    }

    /// @notice Changes the operator name
    /// @param _name The new operator name
    function setName(string calldata _name) external onlyOwner {
        _setName(_name);
    }

    /// @notice Claims the commission for all the recipients
    function claim() external {
        uint256 balance = address(this).balance;
        uint256 totalSent = 0;
        for (uint256 i = 0; i < recipients.length - 1;) {
            uint256 value = Math.mulDiv(balance, percents[i], MAX_BPS);
            (bool success, bytes memory rdata) = recipients[i].call{value: value}("");
            if (!success) {
                revert RecipientTransferFailed(recipients[i], rdata);
            }
            totalSent += value;
            unchecked {
                ++i;
            }
        }
        {
            (bool success, bytes memory rdata) = recipients[recipients.length - 1].call{value: balance - totalSent}("");
            if (!success) {
                revert RecipientTransferFailed(recipients[recipients.length - 1], rdata);
            }
        }
        emit Claimed(balance);
    }

    /// @notice Internal utility function to set the operator fee
    /// @param _operatorFee The new operator fee
    function _setOperatorFee(uint256 _operatorFee) internal {
        if (_operatorFee > maximumOperatorFee) {
            revert InvalidFeeBps(_operatorFee);
        }
        operatorFee = _operatorFee;
        emit UpdatedOperatorFee(_operatorFee);
    }

    /// @notice Internal utility function to set the recipients and their respective percentages
    /// @param _recipients The new list of recipients, sorted in ascending order without duplicates
    /// @param _percentsBps The new list of percentages
    function _setRecipients(address[] memory _recipients, uint256[] memory _percentsBps) internal {
        uint256 recipientsLength = _recipients.length;
        if (recipientsLength == 0) {
            revert EmptyRecipientArguments();
        }
        if (recipientsLength != _percentsBps.length) {
            revert InvalidArgumentLengths();
        }
        uint256 totalPercentsBps = 0;
        for (uint256 i = 0; i < recipientsLength; ++i) {
            totalPercentsBps += _percentsBps[i];
            if (i > 0 && uint160(_recipients[i]) <= uint160(_recipients[i - 1])) {
                revert InvalidUnsortedRecipients();
            }
            if (_recipients[i] == address(0)) {
                revert ZeroAddress();
            }
            if (_percentsBps[i] == 0) {
                revert ZeroPercentBps();
            }
        }
        if (totalPercentsBps != MAX_BPS) {
            revert InvalidPercentSum();
        }
        recipients = _recipients;
        percents = _percentsBps;
        emit UpdatedRecipients(_recipients, _percentsBps);
    }

    /// @notice Internal utility function to set the operator name
    /// @param _name The new operator name
    function _setName(string memory _name) internal {
        if (bytes(_name).length == 0) {
            revert InvalidEmptyString();
        }
        name = _name;
        emit UpdatedOperatorName(_name);
    }
}

File 4 of 6 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 5 of 6 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 6 of 6 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "vulcan/=lib/vulcan/src/",
    "deploy.sol/=lib/deploy.sol/src/",
    "solmate/=lib/deploy.sol/lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "libraries": {}
}

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"InvalidOperatorAddress","type":"error"},{"inputs":[],"name":"InvalidZeroAddress","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[{"internalType":"bytes","name":"errorData","type":"bytes"}],"name":"OperatorTransferFailed","type":"error"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes","name":"errorData","type":"bytes"}],"name":"OwnerTransferFailed","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"Configured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes","name":"errorData","type":"bytes"}],"name":"OwnerTransferFailureCaught","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"operatorAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"recipientAmount","type":"uint256"}],"name":"Split","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract Operator","name":"_operator","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"operator","outputs":[{"internalType":"contract Operator","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

 Latest 3 blocks produced

Block Transaction Difficulty Gas Used Reward
27403042024-11-14 19:29:4871 days ago1731612588210.00 TH9,846,404 (32.82%)
0.001168909128822069 ETH
26880962024-11-07 0:51:0079 days ago1730940660180.00 TH6,316,931 (21.06%)
0.004952079342857608 ETH
16390182024-05-30 10:38:24240 days ago1717065504530.00 TH9,031,007 (30.10%)
0.015497328002526824 ETH

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.