Holesky Testnet

Contract

0x25133c2c49A343F8312bb6e896C1ea0Ad8CD0EBd

Overview

ETH Balance

0 ETH

Multichain Info

N/A
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
wstETH_Burner

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 13 : wstETH_Burner.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import {SelfDestruct} from "../common/SelfDestruct.sol";
import {UintRequests} from "../common/UintRequests.sol";

import {IWithdrawalQueue} from "../../interfaces/burners/wstETH/IWithdrawalQueue.sol";
import {IWstETH} from "../../interfaces/burners/wstETH/IWstETH.sol";
import {IwstETH_Burner} from "../../interfaces/burners/wstETH/IwstETH_Burner.sol";

import {IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

contract wstETH_Burner is UintRequests, IwstETH_Burner {
    using Math for uint256;

    /**
     * @inheritdoc IwstETH_Burner
     */
    address public immutable COLLATERAL;

    /**
     * @inheritdoc IwstETH_Burner
     */
    address public immutable STETH;

    /**
     * @inheritdoc IwstETH_Burner
     */
    address public immutable LIDO_WITHDRAWAL_QUEUE;

    /**
     * @inheritdoc IwstETH_Burner
     */
    uint256 public immutable MIN_STETH_WITHDRAWAL_AMOUNT;

    /**
     * @inheritdoc IwstETH_Burner
     */
    uint256 public immutable MAX_STETH_WITHDRAWAL_AMOUNT;

    constructor(address collateral, address lidoWithdrawalQueue) {
        COLLATERAL = collateral;

        LIDO_WITHDRAWAL_QUEUE = lidoWithdrawalQueue;

        STETH = IWithdrawalQueue(lidoWithdrawalQueue).STETH();
        MIN_STETH_WITHDRAWAL_AMOUNT = IWithdrawalQueue(lidoWithdrawalQueue).MIN_STETH_WITHDRAWAL_AMOUNT();
        MAX_STETH_WITHDRAWAL_AMOUNT = IWithdrawalQueue(lidoWithdrawalQueue).MAX_STETH_WITHDRAWAL_AMOUNT();

        IERC20(STETH).approve(LIDO_WITHDRAWAL_QUEUE, type(uint256).max);
    }

    /**
     * @inheritdoc IwstETH_Burner
     */
    function triggerWithdrawal(
        uint256 maxRequests
    ) external returns (uint256[] memory requestIds_) {
        IWstETH(COLLATERAL).unwrap(IERC20(COLLATERAL).balanceOf(address(this)));
        uint256 stETHAmount = IERC20(STETH).balanceOf(address(this));

        uint256 requests = stETHAmount / MAX_STETH_WITHDRAWAL_AMOUNT;
        if (stETHAmount % MAX_STETH_WITHDRAWAL_AMOUNT >= MIN_STETH_WITHDRAWAL_AMOUNT) {
            requests += 1;
        }
        requests = Math.min(requests, maxRequests);

        if (requests == 0) {
            revert InsufficientWithdrawal();
        }

        uint256[] memory amounts = new uint256[](requests);
        uint256 requestsMinusOne = requests - 1;
        for (uint256 i; i < requestsMinusOne; ++i) {
            amounts[i] = MAX_STETH_WITHDRAWAL_AMOUNT;
        }
        amounts[requestsMinusOne] =
            Math.min(stETHAmount - requestsMinusOne * MAX_STETH_WITHDRAWAL_AMOUNT, MAX_STETH_WITHDRAWAL_AMOUNT);

        requestIds_ = IWithdrawalQueue(LIDO_WITHDRAWAL_QUEUE).requestWithdrawals(amounts, address(this));

        for (uint256 i; i < requests; ++i) {
            _addRequestId(requestIds_[i]);
        }

        emit TriggerWithdrawal(msg.sender, requestIds_);
    }

    /**
     * @inheritdoc IwstETH_Burner
     */
    function triggerBurn(
        uint256 requestId
    ) external {
        _removeRequestId(requestId);

        IWithdrawalQueue(LIDO_WITHDRAWAL_QUEUE).claimWithdrawal(requestId);

        new SelfDestruct{value: address(this).balance}();

        emit TriggerBurn(msg.sender, requestId);
    }

    /**
     * @inheritdoc IwstETH_Burner
     */
    function triggerBurnBatch(uint256[] calldata requestIds_, uint256[] calldata hints) external {
        uint256 length = requestIds_.length;
        for (uint256 i; i < length; ++i) {
            _removeRequestId(requestIds_[i]);
        }

        IWithdrawalQueue(LIDO_WITHDRAWAL_QUEUE).claimWithdrawals(requestIds_, hints);

        new SelfDestruct{value: address(this).balance}();

        emit TriggerBurnBatch(msg.sender, requestIds_);
    }

    receive() external payable {}
}

File 2 of 13 : SelfDestruct.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

contract SelfDestruct {
    constructor() payable {
        selfdestruct(payable(address(this)));
    }
}

File 3 of 13 : UintRequests.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import {IUintRequests} from "../../interfaces/common/IUintRequests.sol";

import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

contract UintRequests is IUintRequests {
    using Math for uint256;
    using EnumerableSet for EnumerableSet.UintSet;

    EnumerableSet.UintSet internal _requestIds;

    /**
     * @inheritdoc IUintRequests
     */
    function requestIdsLength() external view returns (uint256) {
        return _requestIds.length();
    }

    /**
     * @inheritdoc IUintRequests
     */
    function requestIds(uint256 index, uint256 maxRequestIds) external view returns (uint256[] memory requestIds_) {
        uint256 length = Math.min(index + maxRequestIds, _requestIds.length()) - index;

        requestIds_ = new uint256[](length);
        for (uint256 i; i < length;) {
            requestIds_[i] = _requestIds.at(index);
            unchecked {
                ++i;
                ++index;
            }
        }
    }

    function _addRequestId(
        uint256 requestId
    ) internal {
        _requestIds.add(requestId);
    }

    function _removeRequestId(
        uint256 requestId
    ) internal {
        if (!_requestIds.remove(requestId)) {
            revert InvalidRequestId();
        }
    }
}

File 4 of 13 : IWithdrawalQueue.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IWithdrawalQueue {
    /// @notice Lido stETH token address
    function STETH() external view returns (address);

    /// @notice minimal amount of stETH that is possible to withdraw
    function MIN_STETH_WITHDRAWAL_AMOUNT() external view returns (uint256);

    /// @notice maximum amount of stETH that is possible to withdraw by a single request
    /// Prevents accumulating too much funds per single request fulfillment in the future.
    /// @dev To withdraw larger amounts, it's recommended to split it to several requests
    function MAX_STETH_WITHDRAWAL_AMOUNT() external view returns (uint256);

    /// @notice id of the last request
    ///  NB! requests are indexed from 1, so it returns 0 if there is no requests in the queue
    function getLastRequestId() external view returns (uint256);

    /// @notice Request the batch of stETH for withdrawal. Approvals for the passed amounts should be done before.
    /// @param _amounts an array of stETH amount values.
    ///  The standalone withdrawal request will be created for each item in the passed list.
    /// @param _owner address that will be able to manage the created requests.
    ///  If `address(0)` is passed, `msg.sender` will be used as owner.
    /// @return requestIds an array of the created withdrawal request ids
    function requestWithdrawals(
        uint256[] calldata _amounts,
        address _owner
    ) external returns (uint256[] memory requestIds);

    /// @notice Claim a batch of withdrawal requests if they are finalized sending locked ether to the owner
    /// @param _requestIds array of request ids to claim
    /// @param _hints checkpoint hint for each id. Can be obtained with `findCheckpointHints()`
    /// @dev
    ///  Reverts if requestIds and hints arrays length differs
    ///  Reverts if any requestId or hint in arguments are not valid
    ///  Reverts if any request is not finalized or already claimed
    ///  Reverts if msg sender is not an owner of the requests
    function claimWithdrawals(uint256[] calldata _requestIds, uint256[] calldata _hints) external;

    /// @notice Claim one`_requestId` request once finalized sending locked ether to the owner
    /// @param _requestId request id to claim
    /// @dev use unbounded loop to find a hint, which can lead to OOG
    /// @dev
    ///  Reverts if requestId or hint are not valid
    ///  Reverts if request is not finalized or already claimed
    ///  Reverts if msg sender is not an owner of request
    function claimWithdrawal(
        uint256 _requestId
    ) external;

    /// @notice Finalize requests from last finalized one up to `_lastRequestIdToBeFinalized`
    /// @dev ether to finalize all the requests should be calculated using `prefinalize()` and sent along
    function finalize(uint256 _lastRequestIdToBeFinalized, uint256 _maxShareRate) external payable;

    /// @notice length of the checkpoint array. Last possible value for the hint.
    ///  NB! checkpoints are indexed from 1, so it returns 0 if there is no checkpoints
    function getLastCheckpointIndex() external view returns (uint256);

    /// @notice Finds the list of hints for the given `_requestIds` searching among the checkpoints with indices
    ///  in the range  `[_firstIndex, _lastIndex]`.
    ///  NB! Array of request ids should be sorted
    ///  NB! `_firstIndex` should be greater than 0, because checkpoint list is 1-based array
    ///  Usage: findCheckpointHints(_requestIds, 1, getLastCheckpointIndex())
    /// @param _requestIds ids of the requests sorted in the ascending order to get hints for
    /// @param _firstIndex left boundary of the search range. Should be greater than 0
    /// @param _lastIndex right boundary of the search range. Should be less than or equal to getLastCheckpointIndex()
    /// @return hintIds array of hints used to find required checkpoint for the request
    function findCheckpointHints(
        uint256[] calldata _requestIds,
        uint256 _firstIndex,
        uint256 _lastIndex
    ) external view returns (uint256[] memory hintIds);
}

File 5 of 13 : IWstETH.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IWstETH {
    /**
     * @notice Get amount of stETH for a given amount of wstETH
     * @param _wstETHAmount amount of wstETH
     * @return Amount of stETH for a given wstETH amount
     */
    function getStETHByWstETH(
        uint256 _wstETHAmount
    ) external returns (uint256);

    /**
     * @notice Exchanges wstETH to stETH
     * @param _wstETHAmount amount of wstETH to uwrap in exchange for stETH
     * @dev Requirements:
     *  - `_wstETHAmount` must be non-zero
     *  - msg.sender must have at least `_wstETHAmount` wstETH.
     * @return Amount of stETH user receives after unwrap
     */
    function unwrap(
        uint256 _wstETHAmount
    ) external returns (uint256);
}

File 6 of 13 : IwstETH_Burner.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IUintRequests} from "../../common/IUintRequests.sol";

interface IwstETH_Burner is IUintRequests {
    error InsufficientWithdrawal();

    /**
     * @notice Emitted when a withdrawal is triggered.
     * @param caller caller of the function
     * @param requestIds request IDs that were created
     */
    event TriggerWithdrawal(address indexed caller, uint256[] requestIds);

    /**
     * @notice Emitted when a burn is triggered.
     * @param caller caller of the function
     * @param requestId request ID of the withdrawal that was claimed and burned
     */
    event TriggerBurn(address indexed caller, uint256 requestId);

    /**
     * @notice Emitted when a batch burn is triggered.
     * @param caller caller of the function
     * @param requestIds request IDs of the withdrawals that were claimed and burned
     */
    event TriggerBurnBatch(address indexed caller, uint256[] requestIds);

    /**
     * @notice Get an address of the collateral.
     */
    function COLLATERAL() external view returns (address);

    /**
     * @notice Get an address of the stETH token.
     */
    function STETH() external view returns (address);

    /**
     * @notice Get an address of the Lido Withdrawal Queue.
     */
    function LIDO_WITHDRAWAL_QUEUE() external view returns (address);

    /**
     * @notice Get a minimum amount of stETH that can be withdrawn at a request.
     */
    function MIN_STETH_WITHDRAWAL_AMOUNT() external view returns (uint256);

    /**
     * @notice Get a maximum amount of stETH that can be withdrawn at a request.
     */
    function MAX_STETH_WITHDRAWAL_AMOUNT() external view returns (uint256);

    /**
     * @notice Trigger a withdrawal of ETH from the collateral's underlying asset.
     * @param maxRequests maximum number of withdrawal requests to create
     * @return requestIds request IDs that were created
     */
    function triggerWithdrawal(
        uint256 maxRequests
    ) external returns (uint256[] memory requestIds);

    /**
     * @notice Trigger a claim and a burn of ETH.
     * @param requestId request ID of the withdrawal to process
     */
    function triggerBurn(
        uint256 requestId
    ) external;

    /**
     * @notice Trigger a batch claim and burn of ETH.
     * @param requestIds request IDs of the withdrawals to process
     * @param hints hints for the requests
     */
    function triggerBurnBatch(uint256[] calldata requestIds, uint256[] calldata hints) external;
}

File 7 of 13 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 8 of 13 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 9 of 13 : IUintRequests.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IUintRequests {
    error InvalidRequestId();

    /**
     * @notice Get the number of unprocessed request IDs.
     */
    function requestIdsLength() external view returns (uint256);

    /**
     * @notice Get a list of unprocessed request IDs.
     * @param index index of the first request ID
     * @param maxRequestIds maximum number of request IDs to return
     * @return requestIds request IDs
     */
    function requestIds(uint256 index, uint256 maxRequestIds) external view returns (uint256[] memory requestIds);
}

File 10 of 13 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position is the index of the value in the `values` array plus 1.
        // Position 0 is used to mean a value is not in the set.
        mapping(bytes32 value => uint256) _positions;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._positions[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We cache the value's position to prevent multiple reads from the same storage slot
        uint256 position = set._positions[value];

        if (position != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 valueIndex = position - 1;
            uint256 lastIndex = set._values.length - 1;

            if (valueIndex != lastIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the lastValue to the index where the value to delete is
                set._values[valueIndex] = lastValue;
                // Update the tracked position of the lastValue (that was just moved)
                set._positions[lastValue] = position;
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the tracked position for the deleted slot
            delete set._positions[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._positions[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

File 11 of 13 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 12 of 13 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 13 of 13 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

Settings
{
  "remappings": [
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@symbioticfi/core/=lib/core/",
    "core/=lib/core/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"collateral","type":"address"},{"internalType":"address","name":"lidoWithdrawalQueue","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InsufficientWithdrawal","type":"error"},{"inputs":[],"name":"InvalidRequestId","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"TriggerBurn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"requestIds","type":"uint256[]"}],"name":"TriggerBurnBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"requestIds","type":"uint256[]"}],"name":"TriggerWithdrawal","type":"event"},{"inputs":[],"name":"COLLATERAL","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LIDO_WITHDRAWAL_QUEUE","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_STETH_WITHDRAWAL_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_STETH_WITHDRAWAL_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"STETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"maxRequestIds","type":"uint256"}],"name":"requestIds","outputs":[{"internalType":"uint256[]","name":"requestIds_","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"requestIdsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"triggerBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"requestIds_","type":"uint256[]"},{"internalType":"uint256[]","name":"hints","type":"uint256[]"}],"name":"triggerBurnBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxRequests","type":"uint256"}],"name":"triggerWithdrawal","outputs":[{"internalType":"uint256[]","name":"requestIds_","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

6101206040818152346101a3578082610fae80380380916100208285610256565b8339810103126101a3576100338261028d565b91610041602080920161028d565b60809390935260c08390528151630e00bfe560e41b81526001600160a01b0393841693908281600481885afa908115610217575f91610221575b5060a0528251630d25a95760e01b81528281600481885afa908115610217575f916101e9575b5060e052825163db2296cd60e01b8152938290859060049082905afa9384156101ae575f946101b8575b5061010093845260a05160c051845163095ea7b360e01b815290831660048201525f19602482015292918291849160449183915f91165af180156101ae57610177575b505051610d0c91826102a283396080518281816101960152610879015260a05182818160a8015261020c015260c05182818161012901528181610330015281816106260152610905015260e05182818161026b01526108c001525181818160f2015261023f0152f35b81813d83116101a7575b61018b8183610256565b810103126101a35751801515036101a3575f8061010e565b5f80fd5b503d610181565b83513d5f823e3d90fd5b918091945082813d83116101e2575b6101d18183610256565b810103126101a357905192816100cb565b503d6101c7565b90508281813d8311610210575b6102008183610256565b810103126101a3575160046100a1565b503d6101f6565b84513d5f823e3d90fd5b90508281813d831161024f575b6102388183610256565b810103126101a3576102499061028d565b5f61007b565b503d61022e565b601f909101601f19168101906001600160401b0382119082101761027957604052565b634e487b7160e01b5f52604160045260245ffd5b51906001600160a01b03821682036101a35756fe6040608081526004908136101561001f575b5050361561001d575f80fd5b005b5f915f3560e01c9081630bc8cbcf146108e35781630d25a957146108a857816324bbab8b146108645781634383ee3d1461078857816345a67f511461076b5781635faeff4c146105c757816392284cb61461015857508063b8c7777414610115578063db2296cd146100db5763e00bfe500361001157346100d757816003193601126100d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b5080fd5b50346100d757816003193601126100d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b50346100d757816003193601126100d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b919050346105c357602091826003193601126105bf5781516370a0823160e01b8082523082840152823595909290916001600160a01b0391906024907f000000000000000000000000000000000000000000000000000000000000000084169088818481855afa9081156105b55791838a9288948591610580575b508a519485938492636f074d1f60e11b8452898401525af180156105765790889161054d575b50508551948552308286015286858281867f0000000000000000000000000000000000000000000000000000000000000000165afa948515610543578495610510575b507f00000000000000000000000000000000000000000000000000000000000000009788156104fe57888604907f00000000000000000000000000000000000000000000000000000000000000008a880610156104da575b808210156104d25750945b85156104c2576102ae86610ad9565b985f198701918783116104b0578a875b8385821061049b5791505083029083820483148415171561048957938993610305899896946102f36103269f99958b97610aa0565b90808210156104815750915b88610b0b565b5283519b8c9687958694636b34082160e11b865285015260448401906109f2565b90309083015203927f0000000000000000000000000000000000000000000000000000000000000000165af19485156104755781956103d7575b505b8181106103ba575050806103b691518381527fe60bc3f6bd772e2234b4831b9c71ac461b4afc653329fb877fba5853b724ae753391806103a4878201896109f2565b0390a2519282849384528301906109f2565b0390f35b806103d06103ca60019388610b0b565b51610c7e565b5001610362565b9094503d8086833e6103e98183610a7e565b810190848183031261046d5780519067ffffffffffffffff821161047157019080601f8301121561046d57815161041f81610ac1565b9261042c86519485610a7e565b818452868085019260051b8201019283116104695786809101915b8383106104595750505050935f610360565b8251815291810191879101610447565b8780fd5b8580fd5b8680fd5b508251903d90823e3d90fd5b9050916102ff565b634e487b7160e01b8852601186528488fd5b6104a782600194610b0b565b52018b906102be565b634e487b7160e01b8752601185528387fd5b8651636c6c627d60e11b81528390fd5b90509461029f565b90600181018091116104ec5790610294565b634e487b7160e01b8652601184528286fd5b50634e487b7160e01b84526012825283fd5b9094508681813d831161053c575b6105288183610a7e565b810103126105385751935f61023c565b5f80fd5b503d61051e565b86513d86823e3d90fd5b813d831161056f575b6105608183610a7e565b8101031261053857865f6101f9565b503d610556565b87513d87823e3d90fd5b93929450505081813d83116105ae575b61059a8183610a7e565b81010312610538578591838a92515f6101d3565b503d610590565b88513d88823e3d90fd5b8380fd5b8280fd5b919050346105c3576003199080823601126105bf5767ffffffffffffffff833581811161046d576105fb9036908601610a25565b9490936024358381116104695790610617889236908501610a25565b909190835b89811061074a57507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316803b156107465787858761069382968e968e9961068487519b8c9a8b998a9863e3afe0a360e01b8a528901526044880191610b33565b92858403016024860152610b33565b03925af1801561073c57610728575b5050479183519160039081840192848410908411176107155750908291610cd483390391f01561070c577f30d1c85d591b30123c542e62c0c42de83290455affaab177afca24b1c3aecd1e9161070691519182916020835233956020840191610b33565b0390a280f35b513d84823e3d90fd5b634e487b7160e01b895260419052602488fd5b61073190610a56565b61046d57855f6106a2565b85513d84823e3d90fd5b8480fd5b600191929394506107608160051b8a0135610b57565b01908993929161061c565b5050346100d757816003193601126100d757602091549051908152f35b8383346100d757806003193601126100d7578235602481602435810180821161085157906107c49186548082105f146108475750969396610aa0565b916107ce83610ad9565b945f54905b8481106107ef578551602080825281906103b69082018a6109f2565b81881015610835575f8052877f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301546108288289610b0b565b52600197880197016107d3565b83603284634e487b7160e01b5f52525ffd5b9050969396610aa0565b601187634e487b7160e01b5f525260245ffd5b5050346100d757816003193601126100d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b5050346100d757816003193601126100d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b919050346105385760203660031901126105385781359161090383610b57565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316803b15610538575f80916024855180948193637c22221b60e11b835289888401525af180156109e8576109d5575b508151479160038083019167ffffffffffffffff8311848410176109c25750908291610cd483390391f0156109b757519081527f4ee9ebe815db7e3e7645cd8bd4d663bf6b60b8505a4dd52fcf38aaef8b6d988460203392a280f35b51913d9150823e3d90fd5b634e487b7160e01b885260419052602487fd5b6109e0919450610a56565b5f925f61095b565b83513d5f823e3d90fd5b9081518082526020808093019301915f5b828110610a11575050505090565b835185529381019392810192600101610a03565b9181601f840112156105385782359167ffffffffffffffff8311610538576020808501948460051b01011161053857565b67ffffffffffffffff8111610a6a57604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff821117610a6a57604052565b91908203918211610aad57565b634e487b7160e01b5f52601160045260245ffd5b67ffffffffffffffff8111610a6a5760051b60200190565b90610ae382610ac1565b610af06040519182610a7e565b8281528092610b01601f1991610ac1565b0190602036910137565b8051821015610b1f5760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b81835290916001600160fb1b0383116105385760209260051b809284830137010190565b610b6090610bac565b15610b6757565b6040516302e8145360e61b8152600490fd5b5f54811015610b1f575f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301905f90565b5f818152600160205260409020548015610c78575f1990808201818111610aad575f5490838201918211610aad57818103610c2e575b5050505f548015610c1a57810190610bf982610b79565b909182549160031b1b191690555f555f5260016020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b610c62610c3d610c4c93610b79565b90549060031b1c928392610b79565b819391549060031b91821b915f19901b19161790565b90555f52600160205260405f20555f8080610be2565b50505f90565b805f52600160205260405f2054155f14610cce575f5468010000000000000000811015610a6a57610cb8610c4c8260018594015f55610b79565b90555f54905f52600160205260405f2055600190565b505f9056fe30fffea2646970667358221220a5536c2bfcab69b144f305b02d2c852196edf113320bf63a6af5605ec1a3256f64736f6c634300081900330000000000000000000000008d09a4502cc8cf1547ad300e066060d043f6982d000000000000000000000000c7cc160b58f8bb0bac94b80847e2cf2800565c50

Deployed Bytecode

0x6040608081526004908136101561001f575b5050361561001d575f80fd5b005b5f915f3560e01c9081630bc8cbcf146108e35781630d25a957146108a857816324bbab8b146108645781634383ee3d1461078857816345a67f511461076b5781635faeff4c146105c757816392284cb61461015857508063b8c7777414610115578063db2296cd146100db5763e00bfe500361001157346100d757816003193601126100d757517f0000000000000000000000003f1c547b21f65e10480de3ad8e19faac46c950346001600160a01b03168152602090f35b5080fd5b50346100d757816003193601126100d757602090517f00000000000000000000000000000000000000000000003635c9adc5dea000008152f35b50346100d757816003193601126100d757517f000000000000000000000000c7cc160b58f8bb0bac94b80847e2cf2800565c506001600160a01b03168152602090f35b919050346105c357602091826003193601126105bf5781516370a0823160e01b8082523082840152823595909290916001600160a01b0391906024907f0000000000000000000000008d09a4502cc8cf1547ad300e066060d043f6982d84169088818481855afa9081156105b55791838a9288948591610580575b508a519485938492636f074d1f60e11b8452898401525af180156105765790889161054d575b50508551948552308286015286858281867f0000000000000000000000003f1c547b21f65e10480de3ad8e19faac46c95034165afa948515610543578495610510575b507f00000000000000000000000000000000000000000000003635c9adc5dea000009788156104fe57888604907f00000000000000000000000000000000000000000000000000000000000000648a880610156104da575b808210156104d25750945b85156104c2576102ae86610ad9565b985f198701918783116104b0578a875b8385821061049b5791505083029083820483148415171561048957938993610305899896946102f36103269f99958b97610aa0565b90808210156104815750915b88610b0b565b5283519b8c9687958694636b34082160e11b865285015260448401906109f2565b90309083015203927f000000000000000000000000c7cc160b58f8bb0bac94b80847e2cf2800565c50165af19485156104755781956103d7575b505b8181106103ba575050806103b691518381527fe60bc3f6bd772e2234b4831b9c71ac461b4afc653329fb877fba5853b724ae753391806103a4878201896109f2565b0390a2519282849384528301906109f2565b0390f35b806103d06103ca60019388610b0b565b51610c7e565b5001610362565b9094503d8086833e6103e98183610a7e565b810190848183031261046d5780519067ffffffffffffffff821161047157019080601f8301121561046d57815161041f81610ac1565b9261042c86519485610a7e565b818452868085019260051b8201019283116104695786809101915b8383106104595750505050935f610360565b8251815291810191879101610447565b8780fd5b8580fd5b8680fd5b508251903d90823e3d90fd5b9050916102ff565b634e487b7160e01b8852601186528488fd5b6104a782600194610b0b565b52018b906102be565b634e487b7160e01b8752601185528387fd5b8651636c6c627d60e11b81528390fd5b90509461029f565b90600181018091116104ec5790610294565b634e487b7160e01b8652601184528286fd5b50634e487b7160e01b84526012825283fd5b9094508681813d831161053c575b6105288183610a7e565b810103126105385751935f61023c565b5f80fd5b503d61051e565b86513d86823e3d90fd5b813d831161056f575b6105608183610a7e565b8101031261053857865f6101f9565b503d610556565b87513d87823e3d90fd5b93929450505081813d83116105ae575b61059a8183610a7e565b81010312610538578591838a92515f6101d3565b503d610590565b88513d88823e3d90fd5b8380fd5b8280fd5b919050346105c3576003199080823601126105bf5767ffffffffffffffff833581811161046d576105fb9036908601610a25565b9490936024358381116104695790610617889236908501610a25565b909190835b89811061074a57507f000000000000000000000000c7cc160b58f8bb0bac94b80847e2cf2800565c506001600160a01b0316803b156107465787858761069382968e968e9961068487519b8c9a8b998a9863e3afe0a360e01b8a528901526044880191610b33565b92858403016024860152610b33565b03925af1801561073c57610728575b5050479183519160039081840192848410908411176107155750908291610cd483390391f01561070c577f30d1c85d591b30123c542e62c0c42de83290455affaab177afca24b1c3aecd1e9161070691519182916020835233956020840191610b33565b0390a280f35b513d84823e3d90fd5b634e487b7160e01b895260419052602488fd5b61073190610a56565b61046d57855f6106a2565b85513d84823e3d90fd5b8480fd5b600191929394506107608160051b8a0135610b57565b01908993929161061c565b5050346100d757816003193601126100d757602091549051908152f35b8383346100d757806003193601126100d7578235602481602435810180821161085157906107c49186548082105f146108475750969396610aa0565b916107ce83610ad9565b945f54905b8481106107ef578551602080825281906103b69082018a6109f2565b81881015610835575f8052877f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301546108288289610b0b565b52600197880197016107d3565b83603284634e487b7160e01b5f52525ffd5b9050969396610aa0565b601187634e487b7160e01b5f525260245ffd5b5050346100d757816003193601126100d757517f0000000000000000000000008d09a4502cc8cf1547ad300e066060d043f6982d6001600160a01b03168152602090f35b5050346100d757816003193601126100d757602090517f00000000000000000000000000000000000000000000000000000000000000648152f35b919050346105385760203660031901126105385781359161090383610b57565b7f000000000000000000000000c7cc160b58f8bb0bac94b80847e2cf2800565c506001600160a01b0316803b15610538575f80916024855180948193637c22221b60e11b835289888401525af180156109e8576109d5575b508151479160038083019167ffffffffffffffff8311848410176109c25750908291610cd483390391f0156109b757519081527f4ee9ebe815db7e3e7645cd8bd4d663bf6b60b8505a4dd52fcf38aaef8b6d988460203392a280f35b51913d9150823e3d90fd5b634e487b7160e01b885260419052602487fd5b6109e0919450610a56565b5f925f61095b565b83513d5f823e3d90fd5b9081518082526020808093019301915f5b828110610a11575050505090565b835185529381019392810192600101610a03565b9181601f840112156105385782359167ffffffffffffffff8311610538576020808501948460051b01011161053857565b67ffffffffffffffff8111610a6a57604052565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff821117610a6a57604052565b91908203918211610aad57565b634e487b7160e01b5f52601160045260245ffd5b67ffffffffffffffff8111610a6a5760051b60200190565b90610ae382610ac1565b610af06040519182610a7e565b8281528092610b01601f1991610ac1565b0190602036910137565b8051821015610b1f5760209160051b010190565b634e487b7160e01b5f52603260045260245ffd5b81835290916001600160fb1b0383116105385760209260051b809284830137010190565b610b6090610bac565b15610b6757565b6040516302e8145360e61b8152600490fd5b5f54811015610b1f575f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301905f90565b5f818152600160205260409020548015610c78575f1990808201818111610aad575f5490838201918211610aad57818103610c2e575b5050505f548015610c1a57810190610bf982610b79565b909182549160031b1b191690555f555f5260016020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b610c62610c3d610c4c93610b79565b90549060031b1c928392610b79565b819391549060031b91821b915f19901b19161790565b90555f52600160205260405f20555f8080610be2565b50505f90565b805f52600160205260405f2054155f14610cce575f5468010000000000000000811015610a6a57610cb8610c4c8260018594015f55610b79565b90555f54905f52600160205260405f2055600190565b505f9056fe30fffea2646970667358221220a5536c2bfcab69b144f305b02d2c852196edf113320bf63a6af5605ec1a3256f64736f6c63430008190033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000008d09a4502cc8cf1547ad300e066060d043f6982d000000000000000000000000c7cc160b58f8bb0bac94b80847e2cf2800565c50

-----Decoded View---------------
Arg [0] : collateral (address): 0x8d09a4502Cc8Cf1547aD300E066060D043f6982D
Arg [1] : lidoWithdrawalQueue (address): 0xc7cc160b58F8Bb0baC94b80847E2CF2800565C50

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000008d09a4502cc8cf1547ad300e066060d043f6982d
Arg [1] : 000000000000000000000000c7cc160b58f8bb0bac94b80847e2cf2800565c50


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.