Holesky Testnet

Contract

0x56286D7B00fD61AD49f423a07B4944c8E20E2397

Overview

ETH Balance

0 ETH

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
0x60a0346024150602024-09-26 21:34:367 days ago1727386476IN
 Create: MetadataService
0 ETH0.000031410.08946796

Advanced mode:
Parent Transaction Hash Block From To
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
MetadataService

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 6 : MetadataService.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

import {IMetadataService} from "../../interfaces/service/IMetadataService.sol";
import {IRegistry} from "../../interfaces/common/IRegistry.sol";

import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";

contract MetadataService is IMetadataService {
    using Strings for string;

    /**
     * @inheritdoc IMetadataService
     */
    address public immutable REGISTRY;

    /**
     * @inheritdoc IMetadataService
     */
    mapping(address entity => string value) public metadataURL;

    constructor(
        address registry
    ) {
        REGISTRY = registry;
    }

    /**
     * @inheritdoc IMetadataService
     */
    function setMetadataURL(
        string calldata metadataURL_
    ) external {
        if (!IRegistry(REGISTRY).isEntity(msg.sender)) {
            revert NotEntity();
        }

        if (metadataURL[msg.sender].equal(metadataURL_)) {
            revert AlreadySet();
        }

        metadataURL[msg.sender] = metadataURL_;

        emit SetMetadataURL(msg.sender, metadataURL_);
    }
}

File 2 of 6 : IMetadataService.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IMetadataService {
    error AlreadySet();
    error NotEntity();

    /**
     * @notice Emitted when a metadata URL is set for an entity.
     * @param entity address of the entity
     * @param metadataURL new metadata URL of the entity
     */
    event SetMetadataURL(address indexed entity, string metadataURL);

    /**
     * @notice Get the registry's address.
     * @return address of the registry
     */
    function REGISTRY() external view returns (address);

    /**
     * @notice Get a URL with an entity's metadata.
     * @param entity address of the entity
     * @return metadata URL of the entity
     */
    function metadataURL(
        address entity
    ) external view returns (string memory);

    /**
     * @notice Set a new metadata URL for a calling entity.
     * @param metadataURL new metadata URL of the entity
     */
    function setMetadataURL(
        string calldata metadataURL
    ) external;
}

File 3 of 6 : IRegistry.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IRegistry {
    error EntityNotExist();

    /**
     * @notice Emitted when an entity is added.
     * @param entity address of the added entity
     */
    event AddEntity(address indexed entity);

    /**
     * @notice Get if a given address is an entity.
     * @param account address to check
     * @return if the given address is an entity
     */
    function isEntity(
        address account
    ) external view returns (bool);

    /**
     * @notice Get a total number of entities.
     * @return total number of entities added
     */
    function totalEntities() external view returns (uint256);

    /**
     * @notice Get an entity given its index.
     * @param index index of the entity to get
     * @return address of the entity
     */
    function entity(
        uint256 index
    ) external view returns (address);
}

File 4 of 6 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 5 of 6 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 6 of 6 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Settings
{
  "remappings": [
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"registry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadySet","type":"error"},{"inputs":[],"name":"NotEntity","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"entity","type":"address"},{"indexed":false,"internalType":"string","name":"metadataURL","type":"string"}],"name":"SetMetadataURL","type":"event"},{"inputs":[],"name":"REGISTRY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"entity","type":"address"}],"name":"metadataURL","outputs":[{"internalType":"string","name":"value","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"metadataURL_","type":"string"}],"name":"setMetadataURL","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a034606c57601f6105e238819003918201601f19168301916001600160401b03831184841017607157808492602094604052833981010312606c57516001600160a01b0381168103606c5760805260405161055a9081610088823960805181818160a801526103de0152f35b600080fd5b634e487b7160e01b600052604160045260246000fdfe6080604081815260048036101561001557600080fd5b600092833560e01c90816306433b1b146103ca575080634edb8f39146103435763747daec51461004457600080fd5b3461033f5760208060031936011261033b5781359267ffffffffffffffff808511610337573660238601121561033757848401359081116103375760249485810190368784830101116103335783516302910f8b60e31b81523387820152858189817f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03165afa9081156103295789916102ef575b50156102df573388528785526100f784892061047f565b96601f840191601f19978884169987516101138a8d0182610447565b87815289810190888883378d8b8a8301015282519051908b82821494856102ce575b50505050506102c0575090899493929133865285885286862092610159845461040d565b90601f8211610274575b50508598601f86116001146101e5575091848094927ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649a89979589936101d8575b5050508360011b906000198560031b1c19161790555b8184519780895288015283870137840101528133948101030190a280f35b01013590503880806101a4565b85169183875288872092875b818110610258575091869593917ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649b878b9997951061023c575b50505050600183811b0190556101ba565b60001960f88860031b161c19920101351690553880808061022b565b838c0183013585559a8a019a8d98506001909401938a016101f1565b909192938095969752888c209060051c8101918988106102b6575b90601f8d989796959493920160051c01905b81811015610163579687558b966001016102a1565b909150819061028f565b865163a741a04560e01b8152fd5b012091201490503880808b81610135565b835163184849cf60e01b81528690fd5b90508581813d8311610322575b6103068183610447565b8101031261031e5751801515810361031e57386100e0565b8880fd5b503d6102fc565b85513d8b823e3d90fd5b8780fd5b8580fd5b8380fd5b8280fd5b5091346103c757602092836003193601126103c357356001600160a01b038116908190036103c3578193915282815261037d82842061047f565b82519382859384528251928382860152825b8481106103ad57505050828201840152601f01601f19168101030190f35b818101830151888201880152879550820161038f565b5080fd5b80fd5b8490346103c357816003193601126103c3577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b90600182811c9216801561043d575b602083101461042757565b634e487b7160e01b600052602260045260246000fd5b91607f169161041c565b90601f8019910116810190811067ffffffffffffffff82111761046957604052565b634e487b7160e01b600052604160045260246000fd5b906040519182600082546104928161040d565b9081845260209460019160018116908160001461050257506001146104c3575b5050506104c192500383610447565b565b600090815285812095935091905b8183106104ea5750506104c193508201013880806104b2565b855488840185015294850194879450918301916104d1565b925050506104c194925060ff191682840152151560051b8201013880806104b256fea2646970667358221220e8faaeddfdb6693a57645da0bdfce21e81578063356d9835496f56095c86148264736f6c63430008190033000000000000000000000000ac5acd8a105c8305fb980734a5ad920b5920106a

Deployed Bytecode

0x6080604081815260048036101561001557600080fd5b600092833560e01c90816306433b1b146103ca575080634edb8f39146103435763747daec51461004457600080fd5b3461033f5760208060031936011261033b5781359267ffffffffffffffff808511610337573660238601121561033757848401359081116103375760249485810190368784830101116103335783516302910f8b60e31b81523387820152858189817f000000000000000000000000ac5acd8a105c8305fb980734a5ad920b5920106a6001600160a01b03165afa9081156103295789916102ef575b50156102df573388528785526100f784892061047f565b96601f840191601f19978884169987516101138a8d0182610447565b87815289810190888883378d8b8a8301015282519051908b82821494856102ce575b50505050506102c0575090899493929133865285885286862092610159845461040d565b90601f8211610274575b50508598601f86116001146101e5575091848094927ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649a89979589936101d8575b5050508360011b906000198560031b1c19161790555b8184519780895288015283870137840101528133948101030190a280f35b01013590503880806101a4565b85169183875288872092875b818110610258575091869593917ff8dac27f20d622a0759394313683066cb713a406633a3a7dde8799654015ea649b878b9997951061023c575b50505050600183811b0190556101ba565b60001960f88860031b161c19920101351690553880808061022b565b838c0183013585559a8a019a8d98506001909401938a016101f1565b909192938095969752888c209060051c8101918988106102b6575b90601f8d989796959493920160051c01905b81811015610163579687558b966001016102a1565b909150819061028f565b865163a741a04560e01b8152fd5b012091201490503880808b81610135565b835163184849cf60e01b81528690fd5b90508581813d8311610322575b6103068183610447565b8101031261031e5751801515810361031e57386100e0565b8880fd5b503d6102fc565b85513d8b823e3d90fd5b8780fd5b8580fd5b8380fd5b8280fd5b5091346103c757602092836003193601126103c357356001600160a01b038116908190036103c3578193915282815261037d82842061047f565b82519382859384528251928382860152825b8481106103ad57505050828201840152601f01601f19168101030190f35b818101830151888201880152879550820161038f565b5080fd5b80fd5b8490346103c357816003193601126103c3577f000000000000000000000000ac5acd8a105c8305fb980734a5ad920b5920106a6001600160a01b03168152602090f35b90600182811c9216801561043d575b602083101461042757565b634e487b7160e01b600052602260045260246000fd5b91607f169161041c565b90601f8019910116810190811067ffffffffffffffff82111761046957604052565b634e487b7160e01b600052604160045260246000fd5b906040519182600082546104928161040d565b9081845260209460019160018116908160001461050257506001146104c3575b5050506104c192500383610447565b565b600090815285812095935091905b8183106104ea5750506104c193508201013880806104b2565b855488840185015294850194879450918301916104d1565b925050506104c194925060ff191682840152151560051b8201013880806104b256fea2646970667358221220e8faaeddfdb6693a57645da0bdfce21e81578063356d9835496f56095c86148264736f6c63430008190033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000ac5acd8a105c8305fb980734a5ad920b5920106a

-----Decoded View---------------
Arg [0] : registry (address): 0xac5acD8A105C8305fb980734a5AD920b5920106A

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ac5acd8a105c8305fb980734a5ad920b5920106a


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.