Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
mETH_Burner
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; import {SelfDestruct} from "../common/SelfDestruct.sol"; import {UintRequests} from "../common/UintRequests.sol"; import {IMETH} from "../../interfaces/burners/mETH/IMETH.sol"; import {IStaking} from "../../interfaces/burners/mETH/IStaking.sol"; import {ImETH_Burner} from "../../interfaces/burners/mETH/ImETH_Burner.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; contract mETH_Burner is UintRequests, ImETH_Burner { /** * @inheritdoc ImETH_Burner */ address public immutable COLLATERAL; /** * @inheritdoc ImETH_Burner */ address public immutable STAKING; constructor( address collateral ) { COLLATERAL = collateral; STAKING = IMETH(COLLATERAL).stakingContract(); IERC20(COLLATERAL).approve(STAKING, type(uint256).max); } /** * @inheritdoc ImETH_Burner */ function triggerWithdrawal() external returns (uint256 requestId) { uint256 amount = IERC20(COLLATERAL).balanceOf(address(this)); requestId = IStaking(STAKING).unstakeRequest(uint128(amount), uint128(IStaking(STAKING).mETHToETH(amount))); _addRequestId(requestId); emit TriggerWithdrawal(msg.sender, requestId); } /** * @inheritdoc ImETH_Burner */ function triggerBurn( uint256 requestId ) external { _removeRequestId(requestId); IStaking(STAKING).claimUnstakeRequest(requestId); new SelfDestruct{value: address(this).balance}(); emit TriggerBurn(msg.sender, requestId); } receive() external payable {} }
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; contract SelfDestruct { constructor() payable { selfdestruct(payable(address(this))); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.25; import {IUintRequests} from "../../interfaces/common/IUintRequests.sol"; import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; contract UintRequests is IUintRequests { using Math for uint256; using EnumerableSet for EnumerableSet.UintSet; EnumerableSet.UintSet internal _requestIds; /** * @inheritdoc IUintRequests */ function requestIdsLength() external view returns (uint256) { return _requestIds.length(); } /** * @inheritdoc IUintRequests */ function requestIds(uint256 index, uint256 maxRequestIds) external view returns (uint256[] memory requestIds_) { uint256 length = Math.min(index + maxRequestIds, _requestIds.length()) - index; requestIds_ = new uint256[](length); for (uint256 i; i < length;) { requestIds_[i] = _requestIds.at(index); unchecked { ++i; ++index; } } } function _addRequestId( uint256 requestId ) internal { _requestIds.add(requestId); } function _removeRequestId( uint256 requestId ) internal { if (!_requestIds.remove(requestId)) { revert InvalidRequestId(); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IMETH { /// @notice The staking contract which has permissions to mint tokens. function stakingContract() external view returns (address); /// @notice Mint mETH to the staker. /// @param staker The address of the staker. /// @param amount The amount of tokens to mint. /// @dev Expected to be called during the stake operation. function mint(address staker, uint256 amount) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IStaking { /// @notice The minimum amount of mETH users can unstake. function minimumUnstakeBound() external view returns (uint256); /// @notice Converts from ETH to mETH using the current exchange rate. /// The exchange rate is given by the total supply of mETH and total ETH controlled by the protocol. function mETHToETH( uint256 mETHAmount ) external view returns (uint256); /// @notice Interface for users to submit a request to unstake. /// @dev Transfers the specified amount of mETH to the staking contract and locks it there until it is burned on /// request claim. The staking contract must therefore be approved to move the user's mETH on their behalf. /// @param methAmount The amount of mETH to unstake. /// @param minETHAmount The minimum amount of ETH that the user expects to receive. /// @return The request ID. function unstakeRequest(uint128 methAmount, uint128 minETHAmount) external returns (uint256); /// @notice Interface for users to claim their finalized and filled unstaking requests. /// @dev See also {UnstakeRequestsManager} for a more detailed explanation of finalization and request filling. function claimUnstakeRequest( uint256 unstakeRequestID ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IUintRequests} from "../../common/IUintRequests.sol"; interface ImETH_Burner is IUintRequests { /** * @notice Emitted when a withdrawal is triggered. * @param caller caller of the function * @param requestId request ID that was created */ event TriggerWithdrawal(address indexed caller, uint256 requestId); /** * @notice Emitted when a burn is triggered. * @param caller caller of the function * @param requestId request ID of the withdrawal that was claimed and burned */ event TriggerBurn(address indexed caller, uint256 requestId); /** * @notice Get an address of the collateral. */ function COLLATERAL() external view returns (address); /** * @notice Get an address of the Mantle Staking contract. */ function STAKING() external view returns (address); /** * @notice Trigger a withdrawal of ETH from the collateral's underlying asset. * @return requestId request ID that was created */ function triggerWithdrawal() external returns (uint256 requestId); /** * @notice Trigger a claim and a burn of ETH. * @param requestId request ID of the withdrawal to process */ function triggerBurn( uint256 requestId ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IUintRequests { error InvalidRequestId(); /** * @notice Get the number of unprocessed request IDs. */ function requestIdsLength() external view returns (uint256); /** * @notice Get a list of unprocessed request IDs. * @param index index of the first request ID * @param maxRequestIds maximum number of request IDs to return * @return requestIds request IDs */ function requestIds(uint256 index, uint256 maxRequestIds) external view returns (uint256[] memory requestIds); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
{ "remappings": [ "forge-std/=lib/forge-std/src/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@symbioticfi/core/=lib/core/", "core/=lib/core/", "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "shanghai", "viaIR": true, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"collateral","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidRequestId","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"TriggerBurn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":false,"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"TriggerWithdrawal","type":"event"},{"inputs":[],"name":"COLLATERAL","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"STAKING","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"maxRequestIds","type":"uint256"}],"name":"requestIds","outputs":[{"internalType":"uint256[]","name":"requestIds_","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"requestIdsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"requestId","type":"uint256"}],"name":"triggerBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"triggerWithdrawal","outputs":[{"internalType":"uint256","name":"requestId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60c0604090808252346101025761002c9061095780380380916100228285610152565b8339810190610189565b60808190528151633ba6481760e21b8152906020906001600160a01b039082908490600490829085165afa928315610148575f93610117575b5060a0839052608051845163095ea7b360e01b815293821660048501525f1960248501528291849160449183915f91165af1801561010d576100d6575b82516107ae90816101a9823960805181818161025601526103fa015260a0518181816085015281816102ac015261042e0152f35b81813d8311610106575b6100ea8183610152565b81010312610102575180151503610102575f806100a2565b5f80fd5b503d6100e0565b83513d5f823e3d90fd5b8291935061013a90823d8411610141575b6101328183610152565b810190610189565b9290610065565b503d610128565b84513d5f823e3d90fd5b601f909101601f19168101906001600160401b0382119082101761017557604052565b634e487b7160e01b5f52604160045260245ffd5b9081602091031261010257516001600160a01b0381168103610102579056fe6080604081815260049182361015610021575b505050361561001f575f80fd5b005b5f925f3560e01c918263041e0185146103c7575081630bc8cbcf1461028557816324bbab8b146102415781634383ee3d146100d45750806345a67f51146100b8576397610f30146100725780610012565b346100b457816003193601126100b457517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b5080fd5b50346100b457816003193601126100b457602091549051908152f35b9050823461023e578260031936011261023e5781359060249082602435810180821161022b578254808210156102235750905b810390811161021057909194939261011e826105db565b9161012b865193846105a5565b808352610137816105db565b6020978489019691601f19013688375f54865b8481106101925750505050505083519485948186019282875251809352850193925b82811061017b57505050500390f35b83518552869550938101939281019260010161016c565b81869b9897999a9b10156101fe575f8052857f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563015489518210156101ec57888260051b8b010152600180910195019499989795969961014a565b634e487b7160e01b8852603285528388fd5b82603285634e487b7160e01b5f52525ffd5b601185634e487b7160e01b5f525260245ffd5b905090610107565b634e487b7160e01b835260118652602483fd5b80fd5b5050346100b457816003193601126100b457517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b919050346103b55760203660031901126103b5578135916102a5836106a5565b156103b9577f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316803b156103b5575f809160248551809481936302bf676560e41b835289888401525af180156103ab5761037c575b508151479160038083019167ffffffffffffffff831184841017610369575090829161077683390391f01561035e57519081527f4ee9ebe815db7e3e7645cd8bd4d663bf6b60b8505a4dd52fcf38aaef8b6d988460203392a280f35b51913d9150823e3d90fd5b634e487b7160e01b885260419052602487fd5b90935067ffffffffffffffff81116103985781525f925f610302565b604184634e487b7160e01b5f525260245ffd5b83513d5f823e3d90fd5b5f80fd5b90516302e8145360e61b8152fd5b9083346103b5575f3660031901126103b5576370a0823160e01b835230828401526020926001600160a01b0384826024817f000000000000000000000000000000000000000000000000000000000000000085165afa9182156103ab575f92610576575b507f000000000000000000000000000000000000000000000000000000000000000016906fffffffffffffffffffffffffffffffff918351631624304760e21b815282868201528681602481855afa90811561056c579087949392915f91610536575b5060449291845f928851998a97889663448f7a1f60e11b885216908601521660248401525af191821561052c575f926104fd575b506104cc8261063a565b5080518281527f262b8826d3cce07380cc79eea8c1390c2680f3cc26276b7aecaed4868164cb45843392a251908152f35b9091508281813d8311610525575b61051581836105a5565b810103126103b5575190836104c2565b503d61050b565b50513d5f823e3d90fd5b85819692509392933d8311610565575b61055081836105a5565b810103126103b557925186939190604461048e565b503d610546565b85513d5f823e3d90fd5b9091508481813d831161059e575b61058e81836105a5565b810103126103b55751908561042b565b503d610584565b90601f8019910116810190811067ffffffffffffffff8211176105c757604052565b634e487b7160e01b5f52604160045260245ffd5b67ffffffffffffffff81116105c75760051b60200190565b5f54811015610626575f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301905f90565b634e487b7160e01b5f52603260045260245ffd5b805f52600160205260405f2054155f146106a0575f54680100000000000000008110156105c75761068a6106748260018594015f556105f3565b819391549060031b91821b915f19901b19161790565b90555f54905f52600160205260405f2055600190565b505f90565b5f81815260016020526040902054801561076f575f199080820181811161075b575f549083820191821161075b57818103610727575b5050505f548015610713578101906106f2826105f3565b909182549160031b1b191690555f555f5260016020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b610745610736610674936105f3565b90549060031b1c9283926105f3565b90555f52600160205260405f20555f80806106db565b634e487b7160e01b5f52601160045260245ffd5b50505f9056fe30fffea26469706673582212202d769f26f32bc90687ce92332af3e7d84070be76f4642337826ca60763300a1a64736f6c63430008190033000000000000000000000000e3c063b1bee9de02eb28352b55d49d85514c67ff
Deployed Bytecode
0x6080604081815260049182361015610021575b505050361561001f575f80fd5b005b5f925f3560e01c918263041e0185146103c7575081630bc8cbcf1461028557816324bbab8b146102415781634383ee3d146100d45750806345a67f51146100b8576397610f30146100725780610012565b346100b457816003193601126100b457517f000000000000000000000000be16244eae9837219147384c8a7560ba149462626001600160a01b03168152602090f35b5080fd5b50346100b457816003193601126100b457602091549051908152f35b9050823461023e578260031936011261023e5781359060249082602435810180821161022b578254808210156102235750905b810390811161021057909194939261011e826105db565b9161012b865193846105a5565b808352610137816105db565b6020978489019691601f19013688375f54865b8481106101925750505050505083519485948186019282875251809352850193925b82811061017b57505050500390f35b83518552869550938101939281019260010161016c565b81869b9897999a9b10156101fe575f8052857f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e563015489518210156101ec57888260051b8b010152600180910195019499989795969961014a565b634e487b7160e01b8852603285528388fd5b82603285634e487b7160e01b5f52525ffd5b601185634e487b7160e01b5f525260245ffd5b905090610107565b634e487b7160e01b835260118652602483fd5b80fd5b5050346100b457816003193601126100b457517f000000000000000000000000e3c063b1bee9de02eb28352b55d49d85514c67ff6001600160a01b03168152602090f35b919050346103b55760203660031901126103b5578135916102a5836106a5565b156103b9577f000000000000000000000000be16244eae9837219147384c8a7560ba149462626001600160a01b0316803b156103b5575f809160248551809481936302bf676560e41b835289888401525af180156103ab5761037c575b508151479160038083019167ffffffffffffffff831184841017610369575090829161077683390391f01561035e57519081527f4ee9ebe815db7e3e7645cd8bd4d663bf6b60b8505a4dd52fcf38aaef8b6d988460203392a280f35b51913d9150823e3d90fd5b634e487b7160e01b885260419052602487fd5b90935067ffffffffffffffff81116103985781525f925f610302565b604184634e487b7160e01b5f525260245ffd5b83513d5f823e3d90fd5b5f80fd5b90516302e8145360e61b8152fd5b9083346103b5575f3660031901126103b5576370a0823160e01b835230828401526020926001600160a01b0384826024817f000000000000000000000000e3c063b1bee9de02eb28352b55d49d85514c67ff85165afa9182156103ab575f92610576575b507f000000000000000000000000be16244eae9837219147384c8a7560ba1494626216906fffffffffffffffffffffffffffffffff918351631624304760e21b815282868201528681602481855afa90811561056c579087949392915f91610536575b5060449291845f928851998a97889663448f7a1f60e11b885216908601521660248401525af191821561052c575f926104fd575b506104cc8261063a565b5080518281527f262b8826d3cce07380cc79eea8c1390c2680f3cc26276b7aecaed4868164cb45843392a251908152f35b9091508281813d8311610525575b61051581836105a5565b810103126103b5575190836104c2565b503d61050b565b50513d5f823e3d90fd5b85819692509392933d8311610565575b61055081836105a5565b810103126103b557925186939190604461048e565b503d610546565b85513d5f823e3d90fd5b9091508481813d831161059e575b61058e81836105a5565b810103126103b55751908561042b565b503d610584565b90601f8019910116810190811067ffffffffffffffff8211176105c757604052565b634e487b7160e01b5f52604160045260245ffd5b67ffffffffffffffff81116105c75760051b60200190565b5f54811015610626575f80527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56301905f90565b634e487b7160e01b5f52603260045260245ffd5b805f52600160205260405f2054155f146106a0575f54680100000000000000008110156105c75761068a6106748260018594015f556105f3565b819391549060031b91821b915f19901b19161790565b90555f54905f52600160205260405f2055600190565b505f90565b5f81815260016020526040902054801561076f575f199080820181811161075b575f549083820191821161075b57818103610727575b5050505f548015610713578101906106f2826105f3565b909182549160031b1b191690555f555f5260016020525f6040812055600190565b634e487b7160e01b5f52603160045260245ffd5b610745610736610674936105f3565b90549060031b1c9283926105f3565b90555f52600160205260405f20555f80806106db565b634e487b7160e01b5f52601160045260245ffd5b50505f9056fe30fffea26469706673582212202d769f26f32bc90687ce92332af3e7d84070be76f4642337826ca60763300a1a64736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e3c063b1bee9de02eb28352b55d49d85514c67ff
-----Decoded View---------------
Arg [0] : collateral (address): 0xe3C063B1BEe9de02eb28352b55D49D85514C67FF
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000e3c063b1bee9de02eb28352b55d49d85514c67ff
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.