Holesky Testnet

Contract

0x63E459f3E2d8F7f5E4AdBA55DE6c50CbB43dD563

Overview

ETH Balance

0 ETH

Multichain Info

N/A
Transaction Hash
Method
Block
From
To
Opt In23081872024-09-10 13:31:006 hrs ago1725975060IN
0x63E459f3...bB43dD563
0 ETH0.000001780.02247497
Opt In23081862024-09-10 13:30:366 hrs ago1725975036IN
0x63E459f3...bB43dD563
0 ETH0.000001780.02247497
Opt In23074562024-09-10 10:47:249 hrs ago1725965244IN
0x63E459f3...bB43dD563
0 ETH0.000002510.03165772
Opt In23074472024-09-10 10:45:369 hrs ago1725965136IN
0x63E459f3...bB43dD563
0 ETH0.000002570.03230379
Opt In23069592024-09-10 8:57:3611 hrs ago1725958656IN
0x63E459f3...bB43dD563
0 ETH0.000071560.89945131
Opt In23069542024-09-10 8:56:3611 hrs ago1725958596IN
0x63E459f3...bB43dD563
0 ETH0.000064370.80903489
Opt In23059352024-09-10 5:08:1215 hrs ago1725944892IN
0x63E459f3...bB43dD563
0 ETH0.000072610.912673
Opt In23059292024-09-10 5:07:0015 hrs ago1725944820IN
0x63E459f3...bB43dD563
0 ETH0.000072610.912673
Opt In23027582024-09-09 17:26:3626 hrs ago1725902796IN
0x63E459f3...bB43dD563
0 ETH0.000021920.67302708
Opt In23019702024-09-09 14:34:3629 hrs ago1725892476IN
0x63E459f3...bB43dD563
0 ETH0.000060480.76023106
Opt In23019652024-09-09 14:33:3629 hrs ago1725892416IN
0x63E459f3...bB43dD563
0 ETH0.000062350.78374336
Opt In23013432024-09-09 12:17:0031 hrs ago1725884220IN
0x63E459f3...bB43dD563
0 ETH0.000074860.9409
Opt In23013422024-09-09 12:16:4831 hrs ago1725884208IN
0x63E459f3...bB43dD563
0 ETH0.000074860.9409
Opt In22987542024-09-09 2:40:2441 hrs ago1725849624IN
0x63E459f3...bB43dD563
0 ETH0.000015830.19908047
Opt In22987492024-09-09 2:39:1241 hrs ago1725849552IN
0x63E459f3...bB43dD563
0 ETH0.000087721.10258119
Opt In22965642024-09-08 18:46:242 days ago1725821184IN
0x63E459f3...bB43dD563
0 ETH0.00001460.18351488
Opt In22965642024-09-08 18:46:242 days ago1725821184IN
0x63E459f3...bB43dD563
0 ETH0.00001460.18351488
Opt In22893702024-09-07 16:19:123 days ago1725725952IN
0x63E459f3...bB43dD563
0 ETH0.000026850.33757597
Opt In22893672024-09-07 16:18:363 days ago1725725916IN
0x63E459f3...bB43dD563
0 ETH0.000027130.34105613
Opt In22827412024-09-06 15:57:124 days ago1725638232IN
0x63E459f3...bB43dD563
0 ETH0.000023520.29571227
Opt In22827402024-09-06 15:57:004 days ago1725638220IN
0x63E459f3...bB43dD563
0 ETH0.000023520.29571227
Opt In22818652024-09-06 12:43:484 days ago1725626628IN
0x63E459f3...bB43dD563
0 ETH0.000019790.53291844
Opt In22818652024-09-06 12:43:484 days ago1725626628IN
0x63E459f3...bB43dD563
0 ETH0.000043260.54379433
Opt In22818192024-09-06 12:34:004 days ago1725626040IN
0x63E459f3...bB43dD563
0 ETH0.000043710.54940046
Opt In22689022024-09-04 13:07:486 days ago1725455268IN
0x63E459f3...bB43dD563
0 ETH0.000099451.25
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
OptInService

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 9 : OptInService.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

import {StaticDelegateCallable} from "src/contracts/common/StaticDelegateCallable.sol";

import {IOptInService} from "src/interfaces/service/IOptInService.sol";
import {IRegistry} from "src/interfaces/common/IRegistry.sol";

import {Checkpoints} from "src/contracts/libraries/Checkpoints.sol";

import {Time} from "@openzeppelin/contracts/utils/types/Time.sol";

contract OptInService is StaticDelegateCallable, IOptInService {
    using Checkpoints for Checkpoints.Trace208;

    /**
     * @inheritdoc IOptInService
     */
    address public immutable WHO_REGISTRY;

    /**
     * @inheritdoc IOptInService
     */
    address public immutable WHERE_REGISTRY;

    mapping(address who => mapping(address where => Checkpoints.Trace208 value)) internal _isOptedIn;

    constructor(address whoRegistry, address whereRegistry) {
        WHO_REGISTRY = whoRegistry;
        WHERE_REGISTRY = whereRegistry;
    }

    /**
     * @inheritdoc IOptInService
     */
    function isOptedInAt(
        address who,
        address where,
        uint48 timestamp,
        bytes calldata hint
    ) external view returns (bool) {
        return _isOptedIn[who][where].upperLookupRecent(timestamp, hint) == 1;
    }

    /**
     * @inheritdoc IOptInService
     */
    function isOptedIn(address who, address where) public view returns (bool) {
        return _isOptedIn[who][where].latest() == 1;
    }

    /**
     * @inheritdoc IOptInService
     */
    function optIn(address where) external {
        if (!IRegistry(WHO_REGISTRY).isEntity(msg.sender)) {
            revert NotWho();
        }

        if (!IRegistry(WHERE_REGISTRY).isEntity(where)) {
            revert NotWhereEntity();
        }

        if (isOptedIn(msg.sender, where)) {
            revert AlreadyOptedIn();
        }

        _isOptedIn[msg.sender][where].push(Time.timestamp(), 1);

        emit OptIn(msg.sender, where);
    }

    /**
     * @inheritdoc IOptInService
     */
    function optOut(address where) external {
        (, uint48 latestTimestamp, uint208 latestValue) = _isOptedIn[msg.sender][where].latestCheckpoint();

        if (latestValue == 0) {
            revert NotOptedIn();
        }

        if (latestTimestamp == Time.timestamp()) {
            revert OptOutCooldown();
        }

        _isOptedIn[msg.sender][where].push(Time.timestamp(), 0);

        emit OptOut(msg.sender, where);
    }
}

File 2 of 9 : StaticDelegateCallable.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

abstract contract StaticDelegateCallable {
    function staticDelegateCall(address target, bytes calldata data) external {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        bytes memory revertData = abi.encode(success, returndata);
        assembly {
            revert(add(32, revertData), mload(revertData))
        }
    }
}

File 3 of 9 : IOptInService.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

interface IOptInService {
    error AlreadyOptedIn();
    error NotOptedIn();
    error NotWhereEntity();
    error NotWho();
    error OptOutCooldown();

    /**
     * @notice Emitted when a "who" opts into a "where" entity.
     * @param who address of the "who"
     * @param where address of the "where" entity
     */
    event OptIn(address indexed who, address indexed where);

    /**
     * @notice Emitted when a "who" opts out from a "where" entity.
     * @param who address of the "who"
     * @param where address of the "where" entity
     */
    event OptOut(address indexed who, address indexed where);

    /**
     * @notice Get the "who" registry's address.
     * @return address of the "who" registry
     */
    function WHO_REGISTRY() external view returns (address);

    /**
     * @notice Get the address of the registry where to opt-in.
     * @return address of the "where" registry
     */
    function WHERE_REGISTRY() external view returns (address);

    /**
     * @notice Get if a given "who" is opted-in to a particular "where" entity at a given timestamp using a hint.
     * @param who address of the "who"
     * @param where address of the "where" registry
     * @param timestamp time point to get if the "who" is opted-in at
     * @param hint hint for the checkpoint index
     * @return if the "who" is opted-in at the given timestamp
     */
    function isOptedInAt(
        address who,
        address where,
        uint48 timestamp,
        bytes calldata hint
    ) external view returns (bool);

    /**
     * @notice Check if a given "who" is opted-in to a particular "where" entity.
     * @param who address of the "who"
     * @param where address of the "where" registry
     * @return if the "who" is opted-in
     */
    function isOptedIn(address who, address where) external view returns (bool);

    /**
     * @notice Opt-in a calling "who" to a particular "where" entity.
     * @param where address of the "where" registry
     */
    function optIn(address where) external;

    /**
     * @notice Opt-out a calling "who" from a particular "where" entity.
     * @param where address of the "where" registry
     */
    function optOut(address where) external;
}

File 4 of 9 : IRegistry.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

interface IRegistry {
    error EntityNotExist();

    /**
     * @notice Emitted when an entity is added.
     * @param entity address of the added entity
     */
    event AddEntity(address indexed entity);

    /**
     * @notice Get if a given address is an entity.
     * @param account address to check
     * @return if the given address is an entity
     */
    function isEntity(address account) external view returns (bool);

    /**
     * @notice Get a total number of entities.
     * @return total number of entities added
     */
    function totalEntities() external view returns (uint256);

    /**
     * @notice Get an entity given its index.
     * @param index index of the entity to get
     * @return address of the entity
     */
    function entity(uint256 index) external view returns (address);
}

File 5 of 9 : Checkpoints.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.25;

import {Checkpoints as OZCheckpoints} from "@openzeppelin/contracts/utils/structs/Checkpoints.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by key.
 */
library Checkpoints {
    using OZCheckpoints for OZCheckpoints.Trace208;

    error SystemCheckpoint();

    struct Trace208 {
        OZCheckpoints.Trace208 _trace;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    struct Trace256 {
        OZCheckpoints.Trace208 _trace;
        uint256[] _values;
    }

    struct Checkpoint256 {
        uint48 _key;
        uint256 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     */
    function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
        return self._trace.push(key, value);
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        return self._trace.upperLookupRecent(key);
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookupRecent} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key, bytes memory hint_) internal view returns (uint208) {
        if (hint_.length == 0) {
            return upperLookupRecent(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint208 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return checkpoint._value;
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return checkpoint._value;
        }

        return upperLookupRecent(self, key);
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     */
    function upperLookupRecentCheckpoint(
        Trace208 storage self,
        uint48 key
    ) internal view returns (bool, uint48, uint208, uint32) {
        uint256 len = self._trace._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._trace._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._trace._checkpoints, key, low, high);

        if (pos == 0) {
            return (false, 0, 0, 0);
        }

        OZCheckpoints.Checkpoint208 memory checkpoint = _unsafeAccess(self._trace._checkpoints, pos - 1);
        return (true, checkpoint._key, checkpoint._value, uint32(pos - 1));
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     *
     * NOTE: This is a variant of {upperLookupRecentCheckpoint} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecentCheckpoint(
        Trace208 storage self,
        uint48 key,
        bytes memory hint_
    ) internal view returns (bool, uint48, uint208, uint32) {
        if (hint_.length == 0) {
            return upperLookupRecentCheckpoint(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint208 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return (true, checkpoint._key, checkpoint._value, hint);
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return (true, checkpoint._key, checkpoint._value, hint);
        }

        return upperLookupRecentCheckpoint(self, key);
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace208 storage self) internal view returns (uint208) {
        return self._trace.latest();
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace208 storage self) internal view returns (bool, uint48, uint208) {
        return self._trace.latestCheckpoint();
    }

    /**
     * @dev Returns a total number of checkpoints.
     */
    function length(Trace208 storage self) internal view returns (uint256) {
        return self._trace.length();
    }

    /**
     * @dev Returns checkpoint at a given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        OZCheckpoints.Checkpoint208 memory checkpoint = self._trace.at(pos);
        return Checkpoint208({_key: checkpoint._key, _value: checkpoint._value});
    }

    /**
     * @dev Pops the last (most recent) checkpoint.
     */
    function pop(Trace208 storage self) internal returns (uint208 value) {
        value = self._trace.latest();
        self._trace._checkpoints.pop();
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace256 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     */
    function push(Trace256 storage self, uint48 key, uint256 value) internal returns (uint256, uint256) {
        if (self._values.length == 0) {
            self._values.push(0);
        }

        uint256 len = self._values.length;
        self._trace.push(key, uint208(len));
        self._values.push(value);

        return (self._values[len - 1], value);
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookupRecent(Trace256 storage self, uint48 key) internal view returns (uint256) {
        uint208 idx = self._trace.upperLookupRecent(key);
        return idx > 0 ? self._values[idx] : 0;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookupRecent} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecent(Trace256 storage self, uint48 key, bytes memory hint_) internal view returns (uint256) {
        if (hint_.length == 0) {
            return upperLookupRecent(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint256 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return checkpoint._value;
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return checkpoint._value;
        }

        return upperLookupRecent(self, key);
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     */
    function upperLookupRecentCheckpoint(
        Trace256 storage self,
        uint48 key
    ) internal view returns (bool, uint48, uint256, uint32) {
        uint256 len = self._trace._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._trace._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._trace._checkpoints, key, low, high);

        if (pos == 0) {
            return (false, 0, 0, 0);
        }

        OZCheckpoints.Checkpoint208 memory checkpoint = _unsafeAccess(self._trace._checkpoints, pos - 1);
        return (true, checkpoint._key, self._values[checkpoint._value], uint32(pos - 1));
    }

    /**
     * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty),
     * and if so the key and value in the checkpoint, and its position in the trace.
     *
     * NOTE: This is a variant of {upperLookupRecentCheckpoint} that can be optimized by getting the hint
     * (index of the checkpoint with a key lower or equal than the search key).
     */
    function upperLookupRecentCheckpoint(
        Trace256 storage self,
        uint48 key,
        bytes memory hint_
    ) internal view returns (bool, uint48, uint256, uint32) {
        if (hint_.length == 0) {
            return upperLookupRecentCheckpoint(self, key);
        }

        uint32 hint = abi.decode(hint_, (uint32));
        Checkpoint256 memory checkpoint = at(self, hint);
        if (checkpoint._key == key) {
            return (true, checkpoint._key, self._values[checkpoint._value], hint);
        }

        if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) {
            return (true, checkpoint._key, self._values[checkpoint._value], hint);
        }

        return upperLookupRecentCheckpoint(self, key);
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace256 storage self) internal view returns (uint256) {
        uint208 idx = self._trace.latest();
        return idx > 0 ? self._values[idx] : 0;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace256 storage self) internal view returns (bool exists, uint48 _key, uint256 _value) {
        uint256 idx;
        (exists, _key, idx) = self._trace.latestCheckpoint();
        _value = exists ? self._values[idx] : 0;
    }

    /**
     * @dev Returns a total number of checkpoints.
     */
    function length(Trace256 storage self) internal view returns (uint256) {
        return self._trace.length();
    }

    /**
     * @dev Returns checkpoint at a given position.
     */
    function at(Trace256 storage self, uint32 pos) internal view returns (Checkpoint256 memory) {
        OZCheckpoints.Checkpoint208 memory checkpoint = self._trace.at(pos);
        return Checkpoint256({_key: checkpoint._key, _value: self._values[checkpoint._value]});
    }

    /**
     * @dev Pops the last (most recent) checkpoint.
     */
    function pop(Trace256 storage self) internal returns (uint256 value) {
        uint208 idx = self._trace.latest();
        if (idx == 0) {
            revert SystemCheckpoint();
        }
        value = self._values[idx];
        self._trace._checkpoints.pop();
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with a key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        OZCheckpoints.Checkpoint208[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing a bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        OZCheckpoints.Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (OZCheckpoints.Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

File 6 of 9 : Time.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";

/**
 * @dev This library provides helpers for manipulating time-related objects.
 *
 * It uses the following types:
 * - `uint48` for timepoints
 * - `uint32` for durations
 *
 * While the library doesn't provide specific types for timepoints and duration, it does provide:
 * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
 * - additional helper functions
 */
library Time {
    using Time for *;

    /**
     * @dev Get the block timestamp as a Timepoint.
     */
    function timestamp() internal view returns (uint48) {
        return SafeCast.toUint48(block.timestamp);
    }

    /**
     * @dev Get the block number as a Timepoint.
     */
    function blockNumber() internal view returns (uint48) {
        return SafeCast.toUint48(block.number);
    }

    // ==================================================== Delay =====================================================
    /**
     * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
     * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
     * This allows updating the delay applied to some operation while keeping some guarantees.
     *
     * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
     * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
     * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
     * still apply for some time.
     *
     *
     * The `Delay` type is 112 bits long, and packs the following:
     *
     * ```
     *   | [uint48]: effect date (timepoint)
     *   |           | [uint32]: value before (duration)
     *   ↓           ↓       ↓ [uint32]: value after (duration)
     * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
     * ```
     *
     * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
     * supported.
     */
    type Delay is uint112;

    /**
     * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
     */
    function toDelay(uint32 duration) internal pure returns (Delay) {
        return Delay.wrap(duration);
    }

    /**
     * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
     * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
     */
    function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
        (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
        return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
    }

    /**
     * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
     * effect timepoint is 0, then the pending value should not be considered.
     */
    function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
        return _getFullAt(self, timestamp());
    }

    /**
     * @dev Get the current value.
     */
    function get(Delay self) internal view returns (uint32) {
        (uint32 delay, , ) = self.getFull();
        return delay;
    }

    /**
     * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
     * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
     * new delay becomes effective.
     */
    function withUpdate(
        Delay self,
        uint32 newValue,
        uint32 minSetback
    ) internal view returns (Delay updatedDelay, uint48 effect) {
        uint32 value = self.get();
        uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
        effect = timestamp() + setback;
        return (pack(value, newValue, effect), effect);
    }

    /**
     * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
     */
    function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        uint112 raw = Delay.unwrap(self);

        valueAfter = uint32(raw);
        valueBefore = uint32(raw >> 32);
        effect = uint48(raw >> 64);

        return (valueBefore, valueAfter, effect);
    }

    /**
     * @dev pack the components into a Delay object.
     */
    function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
        return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
    }
}

File 7 of 9 : Checkpoints.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by block number. See {Votes} as an example.
 *
 * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
 * checkpoint for the current transaction block using the {push} function.
 */
library Checkpoints {
    /**
     * @dev A value was attempted to be inserted on a past checkpoint.
     */
    error CheckpointUnorderedInsertion();

    struct Trace224 {
        Checkpoint224[] _checkpoints;
    }

    struct Checkpoint224 {
        uint32 _key;
        uint224 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
     * library.
     */
    function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace224 storage self) internal view returns (uint224) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace224 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint224 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint224({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint224({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint224[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint224 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace208 {
        Checkpoint208[] _checkpoints;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace208 storage self) internal view returns (uint208) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace208 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint208 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint208({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint208({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace160 {
        Checkpoint160[] _checkpoints;
    }

    struct Checkpoint160 {
        uint96 _key;
        uint160 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
     * library.
     */
    function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace160 storage self) internal view returns (uint160) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace160 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint160 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint160({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint160({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint160[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint160 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

File 8 of 9 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 9 of 9 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

Settings
{
  "remappings": [
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"whoRegistry","type":"address"},{"internalType":"address","name":"whereRegistry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyOptedIn","type":"error"},{"inputs":[],"name":"CheckpointUnorderedInsertion","type":"error"},{"inputs":[],"name":"NotOptedIn","type":"error"},{"inputs":[],"name":"NotWhereEntity","type":"error"},{"inputs":[],"name":"NotWho","type":"error"},{"inputs":[],"name":"OptOutCooldown","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"who","type":"address"},{"indexed":true,"internalType":"address","name":"where","type":"address"}],"name":"OptIn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"who","type":"address"},{"indexed":true,"internalType":"address","name":"where","type":"address"}],"name":"OptOut","type":"event"},{"inputs":[],"name":"WHERE_REGISTRY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WHO_REGISTRY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"who","type":"address"},{"internalType":"address","name":"where","type":"address"}],"name":"isOptedIn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"who","type":"address"},{"internalType":"address","name":"where","type":"address"},{"internalType":"uint48","name":"timestamp","type":"uint48"},{"internalType":"bytes","name":"hint","type":"bytes"}],"name":"isOptedInAt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"where","type":"address"}],"name":"optIn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"where","type":"address"}],"name":"optOut","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"staticDelegateCall","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60c034608157601f610f6138819003918201601f19168301916001600160401b038311848410176086578084926040948552833981010312608157604b6020604583609c565b9201609c565b9060805260a052604051610eb190816100b082396080518181816103800152610521015260a05181818161021f01526103d40152f35b600080fd5b634e487b7160e01b600052604160045260246000fd5b51906001600160a01b038216820360815756fe6080604052600436101561001257600080fd5b60003560e01c8063220d32d414610087578063530e1d43146100825780636d0fae4a1461007d5780639f86fd8514610078578063b1138ad114610073578063c4b5d62c1461006e5763d46104831461006957600080fd5b610550565b61050b565b610341565b61024e565b610209565b61011c565b346100bd5760403660031901126100bd5760206100b36100a56100c2565b6100ad6100d8565b90610646565b6040519015158152f35b600080fd5b600435906001600160a01b03821682036100bd57565b602435906001600160a01b03821682036100bd57565b9181601f840112156100bd5782359167ffffffffffffffff83116100bd57602083818601950101116100bd57565b346100bd5760803660031901126100bd576101356100c2565b61013d6100d8565b6044359065ffffffffffff821682036100bd576064359167ffffffffffffffff83116100bd576101746101a39336906004016100ee565b93909260009560018060a01b0316865285602052604086209060018060a01b0316600052602052604060002090565b926101ad81610712565b926101bb60405194856106e1565b818452368282011161020557916102019560208386946101ec968360019a99013784010152848060d01b03936107a8565b60405191169190911481529081906020820190565b0390f35b8580fd5b346100bd5760003660031901126100bd576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346100bd576040806003193601126100bd576102686100c2565b60243567ffffffffffffffff81116100bd576102889036906004016100ee565b9182845193849384378201906000938493838580955203915af4903d15610337573d916102b483610712565b926102c1855194856106e1565b83523d82602085013e92905b81519384926020911515602085015280840152835193846060850152825b85811061032057846103186080828988838284010152601f801991011681010360608101845201826106e1565b805190602001fd5b8181018301518782016080015286945082016102eb565b60609192906102cd565b346100bd576020806003193601126100bd5761035b6100c2565b6040516302910f8b60e31b8082523360048301526001600160a01b03939182816024817f000000000000000000000000000000000000000000000000000000000000000089165afa9081156104d7576000916104ee575b50156104dc576040519081526001600160a01b038316600482015281816024817f000000000000000000000000000000000000000000000000000000000000000088165afa9182156104d7576000926104aa575b505015610498576104178133610646565b6104865733600090815260208190526040902061045b9061044c9083905b9060018060a01b0316600052602052604060002090565b61045542610906565b90610b39565b505016337f9b730d5b907ee509de729817a2bb37e404418ba569b3a50f36192372f973cb41600080a3005b60405163dcdeaba360e01b8152600490fd5b6040516321f5408d60e01b8152600490fd5b6104c99250803d106104d0575b6104c181836106e1565b81019061072e565b3880610406565b503d6104b7565b610746565b604051630fb9ff9560e41b8152600490fd5b6105059150833d85116104d0576104c181836106e1565b386103b2565b346100bd5760003660031901126100bd576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346100bd5760203660031901126100bd576105696100c2565b33600090815260208190526040902061058c90610587908390610435565b61095c565b9091506001600160d01b0316156106345765ffffffffffff6105bb6105b042610906565b65ffffffffffff1690565b911614610622573360009081526020819052604090206105ef906105e0908390610435565b6105e942610906565b90610c48565b50506001600160a01b0316337f1629cd9ad365627cf8408d19c50224af8f3213c1a18ae48062d92e22bddf7de5600080a3005b60405163291bf4b760e21b8152600490fd5b6040516334b09b3960e11b8152600490fd5b6001600160a01b039081166000908152602081815260408083209490931682529290925281208054806106845750506001905b818060d01b03161490565b6000199181838101116106a55783602091600195522001015460301c610679565b61076e565b634e487b7160e01b600052604160045260246000fd5b6040810190811067ffffffffffffffff8211176106dc57604052565b6106aa565b90601f8019910116810190811067ffffffffffffffff8211176106dc57604052565b60405190610710826106c0565b565b67ffffffffffffffff81116106dc57601f01601f191660200190565b908160209103126100bd575180151581036100bd5790565b6040513d6000823e3d90fd5b908160209103126100bd575163ffffffff811681036100bd5790565b634e487b7160e01b600052601160045260246000fd5b6000198101919082116106a557565b90600163ffffffff809316019182116106a557565b9180511561088f57806020806107c393518301019101610752565b916107ce83826108b2565b926107df845165ffffffffffff1690565b9065ffffffffffff80851692168281146108765782119182610821575b505061080f5761080c92506109bf565b90565b5050602001516001600160d01b031690565b90915061082e8354610784565b63ffffffff831614918215610847575b505038806107fc565b61086e91925061086261085c6105b092610793565b856108b2565b5165ffffffffffff1690565b11388061083e565b50505050602091909101516001600160d01b0316905090565b5061080c916109bf565b604051906108a6826106c0565b60006020838281520152565b6108d7916108d1916108c2610899565b506108cb610899565b50610aa8565b50610938565b65ffffffffffff81511690602060018060d01b0391015116604051916108fc836106c0565b8252602082015290565b65ffffffffffff90818111610919571690565b604490604051906306dfcc6560e41b8252603060048301526024820152fd5b90604051610945816106c0565b915465ffffffffffff8116835260301c6020830152565b805480610970575050600090600090600090565b6000199080828101116106a5576109909260005260206000200101610938565b9065ffffffffffff82511691602060018060d01b0391015116906001929190565b90600182018092116106a557565b908154906000918060058111610a5c575b50915b828110610a0c575050806109e8575050600090565b61080c916109f8610a0592610784565b9060005260206000200190565b5460301c90565b90918082169080831860011c82018092116106a5578460005265ffffffffffff8083602060002001541690851610600014610a4a5750915b906109d3565b929150610a56906109b1565b90610a44565b90610a6682610d29565b82039182116106a5578460005265ffffffffffff8083602060002001541690841610600014610a9757505b386109d0565b9250610aa2906109b1565b91610a91565b8054821015610ac05760005260206000200190600090565b634e487b7160e01b600052603260045260246000fd5b8054680100000000000000008110156106dc57610af891600182018155610aa8565b919091610b2357805160209091015160301b65ffffffffffff191665ffffffffffff91909116179055565b634e487b7160e01b600052600060045260246000fd5b8054908115610c2357610b63610b5e610b5184610784565b8360005260206000200190565b610938565b90610b74825165ffffffffffff1690565b65ffffffffffff8581169491168410610c1157610bdc94602094610ba16105b0865165ffffffffffff1690565b03610be25750610bce916109f8610bb792610784565b660100000000000065ffffffffffff825416179055565b01516001600160d01b031690565b90600190565b9050610c0c91610c01610bf3610703565b65ffffffffffff9093168352565b600182860152610ad6565b610bce565b604051632520601d60e01b8152600490fd5b610c40929150610c34610bf3610703565b60016020830152610ad6565b600090600190565b8054908115610ce457610c60610b5e610b5184610784565b90610c71825165ffffffffffff1690565b65ffffffffffff8581169491168410610c1157610cc294602094610c9e6105b0865165ffffffffffff1690565b03610cc85750610bce916109f8610cb492610784565b65ffffffffffff8154169055565b90600090565b9050610c0c91610cd9610bf3610703565b600085830152610ad6565b610d01929150610cf5610bf3610703565b60006020830152610ad6565b600090600090565b8115610d13570490565b634e487b7160e01b600052601260045260246000fd5b8015610e635780610dfc610df5610deb610de1610dd7610dcd610dc3610db9600161080c9a6000908b60801c80610e57575b508060401c80610e4a575b508060201c80610e3d575b508060101c80610e30575b508060081c80610e23575b508060041c80610e16575b508060021c80610e09575b50821c610e02575b811c1b610db2818b610d09565b0160011c90565b610db2818a610d09565b610db28189610d09565b610db28188610d09565b610db28187610d09565b610db28186610d09565b610db28185610d09565b8092610d09565b90610e69565b8101610da5565b6002915091019038610d9d565b6004915091019038610d92565b6008915091019038610d87565b6010915091019038610d7c565b6020915091019038610d71565b6040915091019038610d66565b91505060809038610d5b565b50600090565b9080821015610e76575090565b90509056fea26469706673582212205aab47b81f75841412f2028bc41fdb5845ea92f3e675d63b9349f91219d89cb364736f6c63430008190033000000000000000000000000a02c55a6306c859517a064fb34d48dfb773a4a520000000000000000000000005035c15f3cb4364cf2cf35ca53e3d6fc45fc8899

Deployed Bytecode

0x6080604052600436101561001257600080fd5b60003560e01c8063220d32d414610087578063530e1d43146100825780636d0fae4a1461007d5780639f86fd8514610078578063b1138ad114610073578063c4b5d62c1461006e5763d46104831461006957600080fd5b610550565b61050b565b610341565b61024e565b610209565b61011c565b346100bd5760403660031901126100bd5760206100b36100a56100c2565b6100ad6100d8565b90610646565b6040519015158152f35b600080fd5b600435906001600160a01b03821682036100bd57565b602435906001600160a01b03821682036100bd57565b9181601f840112156100bd5782359167ffffffffffffffff83116100bd57602083818601950101116100bd57565b346100bd5760803660031901126100bd576101356100c2565b61013d6100d8565b6044359065ffffffffffff821682036100bd576064359167ffffffffffffffff83116100bd576101746101a39336906004016100ee565b93909260009560018060a01b0316865285602052604086209060018060a01b0316600052602052604060002090565b926101ad81610712565b926101bb60405194856106e1565b818452368282011161020557916102019560208386946101ec968360019a99013784010152848060d01b03936107a8565b60405191169190911481529081906020820190565b0390f35b8580fd5b346100bd5760003660031901126100bd576040517f0000000000000000000000005035c15f3cb4364cf2cf35ca53e3d6fc45fc88996001600160a01b03168152602090f35b346100bd576040806003193601126100bd576102686100c2565b60243567ffffffffffffffff81116100bd576102889036906004016100ee565b9182845193849384378201906000938493838580955203915af4903d15610337573d916102b483610712565b926102c1855194856106e1565b83523d82602085013e92905b81519384926020911515602085015280840152835193846060850152825b85811061032057846103186080828988838284010152601f801991011681010360608101845201826106e1565b805190602001fd5b8181018301518782016080015286945082016102eb565b60609192906102cd565b346100bd576020806003193601126100bd5761035b6100c2565b6040516302910f8b60e31b8082523360048301526001600160a01b03939182816024817f000000000000000000000000a02c55a6306c859517a064fb34d48dfb773a4a5289165afa9081156104d7576000916104ee575b50156104dc576040519081526001600160a01b038316600482015281816024817f0000000000000000000000005035c15f3cb4364cf2cf35ca53e3d6fc45fc889988165afa9182156104d7576000926104aa575b505015610498576104178133610646565b6104865733600090815260208190526040902061045b9061044c9083905b9060018060a01b0316600052602052604060002090565b61045542610906565b90610b39565b505016337f9b730d5b907ee509de729817a2bb37e404418ba569b3a50f36192372f973cb41600080a3005b60405163dcdeaba360e01b8152600490fd5b6040516321f5408d60e01b8152600490fd5b6104c99250803d106104d0575b6104c181836106e1565b81019061072e565b3880610406565b503d6104b7565b610746565b604051630fb9ff9560e41b8152600490fd5b6105059150833d85116104d0576104c181836106e1565b386103b2565b346100bd5760003660031901126100bd576040517f000000000000000000000000a02c55a6306c859517a064fb34d48dfb773a4a526001600160a01b03168152602090f35b346100bd5760203660031901126100bd576105696100c2565b33600090815260208190526040902061058c90610587908390610435565b61095c565b9091506001600160d01b0316156106345765ffffffffffff6105bb6105b042610906565b65ffffffffffff1690565b911614610622573360009081526020819052604090206105ef906105e0908390610435565b6105e942610906565b90610c48565b50506001600160a01b0316337f1629cd9ad365627cf8408d19c50224af8f3213c1a18ae48062d92e22bddf7de5600080a3005b60405163291bf4b760e21b8152600490fd5b6040516334b09b3960e11b8152600490fd5b6001600160a01b039081166000908152602081815260408083209490931682529290925281208054806106845750506001905b818060d01b03161490565b6000199181838101116106a55783602091600195522001015460301c610679565b61076e565b634e487b7160e01b600052604160045260246000fd5b6040810190811067ffffffffffffffff8211176106dc57604052565b6106aa565b90601f8019910116810190811067ffffffffffffffff8211176106dc57604052565b60405190610710826106c0565b565b67ffffffffffffffff81116106dc57601f01601f191660200190565b908160209103126100bd575180151581036100bd5790565b6040513d6000823e3d90fd5b908160209103126100bd575163ffffffff811681036100bd5790565b634e487b7160e01b600052601160045260246000fd5b6000198101919082116106a557565b90600163ffffffff809316019182116106a557565b9180511561088f57806020806107c393518301019101610752565b916107ce83826108b2565b926107df845165ffffffffffff1690565b9065ffffffffffff80851692168281146108765782119182610821575b505061080f5761080c92506109bf565b90565b5050602001516001600160d01b031690565b90915061082e8354610784565b63ffffffff831614918215610847575b505038806107fc565b61086e91925061086261085c6105b092610793565b856108b2565b5165ffffffffffff1690565b11388061083e565b50505050602091909101516001600160d01b0316905090565b5061080c916109bf565b604051906108a6826106c0565b60006020838281520152565b6108d7916108d1916108c2610899565b506108cb610899565b50610aa8565b50610938565b65ffffffffffff81511690602060018060d01b0391015116604051916108fc836106c0565b8252602082015290565b65ffffffffffff90818111610919571690565b604490604051906306dfcc6560e41b8252603060048301526024820152fd5b90604051610945816106c0565b915465ffffffffffff8116835260301c6020830152565b805480610970575050600090600090600090565b6000199080828101116106a5576109909260005260206000200101610938565b9065ffffffffffff82511691602060018060d01b0391015116906001929190565b90600182018092116106a557565b908154906000918060058111610a5c575b50915b828110610a0c575050806109e8575050600090565b61080c916109f8610a0592610784565b9060005260206000200190565b5460301c90565b90918082169080831860011c82018092116106a5578460005265ffffffffffff8083602060002001541690851610600014610a4a5750915b906109d3565b929150610a56906109b1565b90610a44565b90610a6682610d29565b82039182116106a5578460005265ffffffffffff8083602060002001541690841610600014610a9757505b386109d0565b9250610aa2906109b1565b91610a91565b8054821015610ac05760005260206000200190600090565b634e487b7160e01b600052603260045260246000fd5b8054680100000000000000008110156106dc57610af891600182018155610aa8565b919091610b2357805160209091015160301b65ffffffffffff191665ffffffffffff91909116179055565b634e487b7160e01b600052600060045260246000fd5b8054908115610c2357610b63610b5e610b5184610784565b8360005260206000200190565b610938565b90610b74825165ffffffffffff1690565b65ffffffffffff8581169491168410610c1157610bdc94602094610ba16105b0865165ffffffffffff1690565b03610be25750610bce916109f8610bb792610784565b660100000000000065ffffffffffff825416179055565b01516001600160d01b031690565b90600190565b9050610c0c91610c01610bf3610703565b65ffffffffffff9093168352565b600182860152610ad6565b610bce565b604051632520601d60e01b8152600490fd5b610c40929150610c34610bf3610703565b60016020830152610ad6565b600090600190565b8054908115610ce457610c60610b5e610b5184610784565b90610c71825165ffffffffffff1690565b65ffffffffffff8581169491168410610c1157610cc294602094610c9e6105b0865165ffffffffffff1690565b03610cc85750610bce916109f8610cb492610784565b65ffffffffffff8154169055565b90600090565b9050610c0c91610cd9610bf3610703565b600085830152610ad6565b610d01929150610cf5610bf3610703565b60006020830152610ad6565b600090600090565b8115610d13570490565b634e487b7160e01b600052601260045260246000fd5b8015610e635780610dfc610df5610deb610de1610dd7610dcd610dc3610db9600161080c9a6000908b60801c80610e57575b508060401c80610e4a575b508060201c80610e3d575b508060101c80610e30575b508060081c80610e23575b508060041c80610e16575b508060021c80610e09575b50821c610e02575b811c1b610db2818b610d09565b0160011c90565b610db2818a610d09565b610db28189610d09565b610db28188610d09565b610db28187610d09565b610db28186610d09565b610db28185610d09565b8092610d09565b90610e69565b8101610da5565b6002915091019038610d9d565b6004915091019038610d92565b6008915091019038610d87565b6010915091019038610d7c565b6020915091019038610d71565b6040915091019038610d66565b91505060809038610d5b565b50600090565b9080821015610e76575090565b90509056fea26469706673582212205aab47b81f75841412f2028bc41fdb5845ea92f3e675d63b9349f91219d89cb364736f6c63430008190033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000a02c55a6306c859517a064fb34d48dfb773a4a520000000000000000000000005035c15f3cb4364cf2cf35ca53e3d6fc45fc8899

-----Decoded View---------------
Arg [0] : whoRegistry (address): 0xa02C55a6306c859517A064fb34d48DFB773A4a52
Arg [1] : whereRegistry (address): 0x5035c15F3cb4364CF2cF35ca53E3d6FC45FC8899

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000a02c55a6306c859517a064fb34d48dfb773a4a52
Arg [1] : 0000000000000000000000005035c15f3cb4364cf2cf35ca53e3d6fc45fc8899


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.