Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
EigenStrategy
Compiler Version
v0.8.12+commit.f00d7308
Optimization Enabled:
Yes with 200 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity =0.8.12; // NOTE: Mainnet uses the OpenZeppelin v4.9.0 contracts, but this imports the 4.7.1 version. This will be changed after an upgrade. import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "../interfaces/IStrategyManager.sol"; import "../strategies/StrategyBase.sol"; import "../interfaces/IEigen.sol"; /** * @title Eigen Strategy implementation of `IStrategy` interface, designed to be inherited from by more complex strategies. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @dev Note that this EigenStrategy contract is designed to be compatible with both bEIGEN and EIGEN tokens. It functions exactly the same * as the `StrategyBase` contract if bEIGEN were the underlying token, but also allows for depositing and withdrawing EIGEN tokens. This is * achieved by unwrapping EIGEN into bEIGEN upon deposit, and wrapping bEIGEN into EIGEN upon withdrawal. Deposits and withdrawals with bEIGEN * does not perform and wrapping or unwrapping. * @notice This contract functions similarly to an ERC4626 vault, only without issuing a token. * To mitigate against the common "inflation attack" vector, we have chosen to use the 'virtual shares' mitigation route, * similar to [OpenZeppelin](https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol). * We acknowledge that this mitigation has the known downside of the virtual shares causing some losses to users, which are pronounced * particularly in the case of the share exchange rate changing signficantly, either positively or negatively. * For a fairly thorough discussion of this issue and our chosen mitigation strategy, we recommend reading through * [this thread](https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706) on the OpenZeppelin repo. * We specifically use a share offset of `SHARES_OFFSET` and a balance offset of `BALANCE_OFFSET`. */ contract EigenStrategy is StrategyBase { using SafeERC20 for IERC20; /** * @notice EIGEN can be deposited into this strategy, where it is unwrapped into bEIGEN and staked in * this strategy contract. EIGEN can also be withdrawn by withdrawing bEIGEN from this strategy, and * then wrapping it back into EIGEN. */ IEigen public EIGEN; /// @notice Since this contract is designed to be initializable, the constructor simply sets `strategyManager`, the only immutable variable. constructor(IStrategyManager _strategyManager) StrategyBase(_strategyManager) {} function initialize( IEigen _EIGEN, IERC20 _bEIGEN, IPauserRegistry _pauserRegistry ) public virtual initializer { EIGEN = _EIGEN; _initializeStrategyBase(_bEIGEN, _pauserRegistry); } /** * @notice This function hook is called in EigenStrategy.deposit() and is overridden here to * allow for depositing of either EIGEN or bEIGEN tokens. If token is bEIGEN aka the underlyingToken, * then the contract functions exactly the same as the StrategyBase contract and the deposit is calculated into shares. * If token is EIGEN, then the EIGEN is first 1-1 unwrapped into bEIGEN and the deposit shares are calculated as normal. * @param token token to be deposited, can be either EIGEN or bEIGEN. If EIGEN, then is unwrapped into bEIGEN * @param amount deposit amount */ function _beforeDeposit(IERC20 token, uint256 amount) internal virtual override { require(token == underlyingToken || token == EIGEN, "EigenStrategy.deposit: Can only deposit bEIGEN or EIGEN"); if (token == EIGEN) { // unwrap EIGEN into bEIGEN assuming a 1-1 unwrapping amount // the strategy will then hold `amount` of bEIGEN EIGEN.unwrap(amount); } } /** * @notice This function hook is called in EigenStrategy.withdraw() before withdrawn shares are calculated and is * overridden here to allow for withdrawing shares either into EIGEN or bEIGEN tokens. If wrapping bEIGEN into EIGEN is needed, * it is performed in _afterWithdrawal(). This hook just checks the token paramater is either EIGEN or bEIGEN. * @param token token to be withdrawn, can be either EIGEN or bEIGEN. If EIGEN, then bEIGEN is wrapped into EIGEN */ function _beforeWithdrawal(address /*recipient*/, IERC20 token, uint256 /*amountShares*/) internal virtual override { require(token == underlyingToken || token == EIGEN, "EigenStrategy.withdraw: Can only withdraw bEIGEN or EIGEN"); } /** * @notice This function hook is called in EigenStrategy.withdraw() after withdrawn shares are calculated and is * overridden here to allow for withdrawing shares either into EIGEN or bEIGEN tokens. If token is bEIGEN aka the underlyingToken, * then the contract functions exactly the same as the StrategyBase contract and transfers out bEIGEN to the recipient. * If token is EIGEN, then bEIGEN is first 1-1 wrapped into EIGEN and the strategy transfers out the EIGEN to the recipient. * @param recipient recipient of the withdrawal * @param token token to be withdrawn, can be either EIGEN or bEIGEN. If EIGEN, then bEIGEN is wrapped into EIGEN * @param amountToSend amount of tokens to transfer */ function _afterWithdrawal(address recipient, IERC20 token, uint256 amountToSend) internal virtual override { if (token == EIGEN) { // wrap bEIGEN into EIGEN assuming a 1-1 wrapping amount // the strategy will then hold `amountToSend` of EIGEN underlyingToken.approve(address(token), amountToSend); EIGEN.wrap(amountToSend); } // Whether the withdrawal specified EIGEN or bEIGEN, the strategy // holds the correct balance and can transfer to the recipient here token.safeTransfer(recipient, amountToSend); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategy.sol"; import "./ISlasher.sol"; import "./IDelegationManager.sol"; import "./IEigenPodManager.sol"; /** * @title Interface for the primary entrypoint for funds into EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice See the `StrategyManager` contract itself for implementation details. */ interface IStrategyManager { /** * @notice Emitted when a new deposit occurs on behalf of `staker`. * @param staker Is the staker who is depositing funds into EigenLayer. * @param strategy Is the strategy that `staker` has deposited into. * @param token Is the token that `staker` deposited. * @param shares Is the number of new shares `staker` has been granted in `strategy`. */ event Deposit(address staker, IERC20 token, IStrategy strategy, uint256 shares); /// @notice Emitted when `thirdPartyTransfersForbidden` is updated for a strategy and value by the owner event UpdatedThirdPartyTransfersForbidden(IStrategy strategy, bool value); /// @notice Emitted when the `strategyWhitelister` is changed event StrategyWhitelisterChanged(address previousAddress, address newAddress); /// @notice Emitted when a strategy is added to the approved list of strategies for deposit event StrategyAddedToDepositWhitelist(IStrategy strategy); /// @notice Emitted when a strategy is removed from the approved list of strategies for deposit event StrategyRemovedFromDepositWhitelist(IStrategy strategy); /** * @notice Deposits `amount` of `token` into the specified `strategy`, with the resultant shares credited to `msg.sender` * @param strategy is the specified strategy where deposit is to be made, * @param token is the denomination in which the deposit is to be made, * @param amount is the amount of token to be deposited in the strategy by the staker * @return shares The amount of new shares in the `strategy` created as part of the action. * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf. * @dev Cannot be called by an address that is 'frozen' (this function will revert if the `msg.sender` is frozen). * * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended. This can lead to attack vectors * where the token balance and corresponding strategy shares are not in sync upon reentrancy. */ function depositIntoStrategy(IStrategy strategy, IERC20 token, uint256 amount) external returns (uint256 shares); /** * @notice Used for depositing an asset into the specified strategy with the resultant shares credited to `staker`, * who must sign off on the action. * Note that the assets are transferred out/from the `msg.sender`, not from the `staker`; this function is explicitly designed * purely to help one address deposit 'for' another. * @param strategy is the specified strategy where deposit is to be made, * @param token is the denomination in which the deposit is to be made, * @param amount is the amount of token to be deposited in the strategy by the staker * @param staker the staker that the deposited assets will be credited to * @param expiry the timestamp at which the signature expires * @param signature is a valid signature from the `staker`. either an ECDSA signature if the `staker` is an EOA, or data to forward * following EIP-1271 if the `staker` is a contract * @return shares The amount of new shares in the `strategy` created as part of the action. * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf. * @dev A signature is required for this function to eliminate the possibility of griefing attacks, specifically those * targeting stakers who may be attempting to undelegate. * @dev Cannot be called if thirdPartyTransfersForbidden is set to true for this strategy * * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended. This can lead to attack vectors * where the token balance and corresponding strategy shares are not in sync upon reentrancy */ function depositIntoStrategyWithSignature( IStrategy strategy, IERC20 token, uint256 amount, address staker, uint256 expiry, bytes memory signature ) external returns (uint256 shares); /// @notice Used by the DelegationManager to remove a Staker's shares from a particular strategy when entering the withdrawal queue function removeShares(address staker, IStrategy strategy, uint256 shares) external; /// @notice Used by the DelegationManager to award a Staker some shares that have passed through the withdrawal queue function addShares(address staker, IERC20 token, IStrategy strategy, uint256 shares) external; /// @notice Used by the DelegationManager to convert withdrawn shares to tokens and send them to a recipient function withdrawSharesAsTokens(address recipient, IStrategy strategy, uint256 shares, IERC20 token) external; /// @notice Returns the current shares of `user` in `strategy` function stakerStrategyShares(address user, IStrategy strategy) external view returns (uint256 shares); /** * @notice Get all details on the staker's deposits and corresponding shares * @return (staker's strategies, shares in these strategies) */ function getDeposits(address staker) external view returns (IStrategy[] memory, uint256[] memory); /// @notice Simple getter function that returns `stakerStrategyList[staker].length`. function stakerStrategyListLength(address staker) external view returns (uint256); /** * @notice Owner-only function that adds the provided Strategies to the 'whitelist' of strategies that stakers can deposit into * @param strategiesToWhitelist Strategies that will be added to the `strategyIsWhitelistedForDeposit` mapping (if they aren't in it already) * @param thirdPartyTransfersForbiddenValues bool values to set `thirdPartyTransfersForbidden` to for each strategy */ function addStrategiesToDepositWhitelist( IStrategy[] calldata strategiesToWhitelist, bool[] calldata thirdPartyTransfersForbiddenValues ) external; /** * @notice Owner-only function that removes the provided Strategies from the 'whitelist' of strategies that stakers can deposit into * @param strategiesToRemoveFromWhitelist Strategies that will be removed to the `strategyIsWhitelistedForDeposit` mapping (if they are in it) */ function removeStrategiesFromDepositWhitelist(IStrategy[] calldata strategiesToRemoveFromWhitelist) external; /// @notice Returns the single, central Delegation contract of EigenLayer function delegation() external view returns (IDelegationManager); /// @notice Returns the single, central Slasher contract of EigenLayer function slasher() external view returns (ISlasher); /// @notice Returns the EigenPodManager contract of EigenLayer function eigenPodManager() external view returns (IEigenPodManager); /// @notice Returns the address of the `strategyWhitelister` function strategyWhitelister() external view returns (address); /** * @notice Returns bool for whether or not `strategy` enables credit transfers. i.e enabling * depositIntoStrategyWithSignature calls or queueing withdrawals to a different address than the staker. */ function thirdPartyTransfersForbidden(IStrategy strategy) external view returns (bool); // LIMITED BACKWARDS-COMPATIBILITY FOR DEPRECATED FUNCTIONALITY // packed struct for queued withdrawals; helps deal with stack-too-deep errors struct DeprecatedStruct_WithdrawerAndNonce { address withdrawer; uint96 nonce; } /** * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored. * In functions that operate on existing queued withdrawals -- e.g. `startQueuedWithdrawalWaitingPeriod` or `completeQueuedWithdrawal`, * the data is resubmitted and the hash of the submitted data is computed by `calculateWithdrawalRoot` and checked against the * stored hash in order to confirm the integrity of the submitted data. */ struct DeprecatedStruct_QueuedWithdrawal { IStrategy[] strategies; uint256[] shares; address staker; DeprecatedStruct_WithdrawerAndNonce withdrawerAndNonce; uint32 withdrawalStartBlock; address delegatedAddress; } function migrateQueuedWithdrawal(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external returns (bool, bytes32); function calculateWithdrawalRoot(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external pure returns (bytes32); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.12; import "../interfaces/IStrategyManager.sol"; import "../permissions/Pausable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin-upgrades/contracts/proxy/utils/Initializable.sol"; /** * @title Base implementation of `IStrategy` interface, designed to be inherited from by more complex strategies. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Simple, basic, "do-nothing" Strategy that holds a single underlying token and returns it on withdrawals. * Implements minimal versions of the IStrategy functions, this contract is designed to be inherited by * more complex strategies, which can then override its functions as necessary. * @dev Note that some functions have their mutability restricted; developers inheriting from this contract cannot broaden * the mutability without modifying this contract itself. * @dev This contract is expressly *not* intended for use with 'fee-on-transfer'-type tokens. * Setting the `underlyingToken` to be a fee-on-transfer token may result in improper accounting. * @notice This contract functions similarly to an ERC4626 vault, only without issuing a token. * To mitigate against the common "inflation attack" vector, we have chosen to use the 'virtual shares' mitigation route, * similar to [OpenZeppelin](https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol). * We acknowledge that this mitigation has the known downside of the virtual shares causing some losses to users, which are pronounced * particularly in the case of the share exchange rate changing signficantly, either positively or negatively. * For a fairly thorough discussion of this issue and our chosen mitigation strategy, we recommend reading through * [this thread](https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706) on the OpenZeppelin repo. * We specifically use a share offset of `SHARES_OFFSET` and a balance offset of `BALANCE_OFFSET`. */ contract StrategyBase is Initializable, Pausable, IStrategy { using SafeERC20 for IERC20; uint8 internal constant PAUSED_DEPOSITS = 0; uint8 internal constant PAUSED_WITHDRAWALS = 1; /** * @notice virtual shares used as part of the mitigation of the common 'share inflation' attack vector. * Constant value chosen to reasonably reduce attempted share inflation by the first depositor, while still * incurring reasonably small losses to depositors */ uint256 internal constant SHARES_OFFSET = 1e3; /** * @notice virtual balance used as part of the mitigation of the common 'share inflation' attack vector * Constant value chosen to reasonably reduce attempted share inflation by the first depositor, while still * incurring reasonably small losses to depositors */ uint256 internal constant BALANCE_OFFSET = 1e3; /// @notice EigenLayer's StrategyManager contract IStrategyManager public immutable strategyManager; /// @notice The underlying token for shares in this Strategy IERC20 public underlyingToken; /// @notice The total number of extant shares in this Strategy uint256 public totalShares; /// @notice Simply checks that the `msg.sender` is the `strategyManager`, which is an address stored immutably at construction. modifier onlyStrategyManager() { require(msg.sender == address(strategyManager), "StrategyBase.onlyStrategyManager"); _; } /// @notice Since this contract is designed to be initializable, the constructor simply sets `strategyManager`, the only immutable variable. constructor(IStrategyManager _strategyManager) { strategyManager = _strategyManager; _disableInitializers(); } function initialize(IERC20 _underlyingToken, IPauserRegistry _pauserRegistry) public virtual initializer { _initializeStrategyBase(_underlyingToken, _pauserRegistry); } /// @notice Sets the `underlyingToken` and `pauserRegistry` for the strategy. function _initializeStrategyBase( IERC20 _underlyingToken, IPauserRegistry _pauserRegistry ) internal onlyInitializing { underlyingToken = _underlyingToken; _initializePauser(_pauserRegistry, UNPAUSE_ALL); } /** * @notice Used to deposit tokens into this Strategy * @param token is the ERC20 token being deposited * @param amount is the amount of token being deposited * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * `depositIntoStrategy` function, and individual share balances are recorded in the strategyManager as well. * @dev Note that the assumption is made that `amount` of `token` has already been transferred directly to this contract * (as performed in the StrategyManager's deposit functions). In particular, setting the `underlyingToken` of this contract * to be a fee-on-transfer token will break the assumption that the amount this contract *received* of the token is equal to * the amount that was input when the transfer was performed (i.e. the amount transferred 'out' of the depositor's balance). * @dev Note that any validation of `token` is done inside `_beforeDeposit`. This can be overridden if needed. * @return newShares is the number of new shares issued at the current exchange ratio. */ function deposit( IERC20 token, uint256 amount ) external virtual override onlyWhenNotPaused(PAUSED_DEPOSITS) onlyStrategyManager returns (uint256 newShares) { // call hook to allow for any pre-deposit logic _beforeDeposit(token, amount); // copy `totalShares` value to memory, prior to any change uint256 priorTotalShares = totalShares; /** * @notice calculation of newShares *mirrors* `underlyingToShares(amount)`, but is different since the balance of `underlyingToken` * has already been increased due to the `strategyManager` transferring tokens to this strategy prior to calling this function */ // account for virtual shares and balance uint256 virtualShareAmount = priorTotalShares + SHARES_OFFSET; uint256 virtualTokenBalance = _tokenBalance() + BALANCE_OFFSET; // calculate the prior virtual balance to account for the tokens that were already transferred to this contract uint256 virtualPriorTokenBalance = virtualTokenBalance - amount; newShares = (amount * virtualShareAmount) / virtualPriorTokenBalance; // extra check for correctness / against edge case where share rate can be massively inflated as a 'griefing' sort of attack require(newShares != 0, "StrategyBase.deposit: newShares cannot be zero"); // update total share amount to account for deposit totalShares = (priorTotalShares + newShares); return newShares; } /** * @notice Used to withdraw tokens from this Strategy, to the `recipient`'s address * @param recipient is the address to receive the withdrawn funds * @param token is the ERC20 token being transferred out * @param amountShares is the amount of shares being withdrawn * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * other functions, and individual share balances are recorded in the strategyManager as well. * @dev Note that any validation of `token` is done inside `_beforeWithdrawal`. This can be overridden if needed. */ function withdraw( address recipient, IERC20 token, uint256 amountShares ) external virtual override onlyWhenNotPaused(PAUSED_WITHDRAWALS) onlyStrategyManager { // call hook to allow for any pre-withdrawal logic _beforeWithdrawal(recipient, token, amountShares); // copy `totalShares` value to memory, prior to any change uint256 priorTotalShares = totalShares; require( amountShares <= priorTotalShares, "StrategyBase.withdraw: amountShares must be less than or equal to totalShares" ); /** * @notice calculation of amountToSend *mirrors* `sharesToUnderlying(amountShares)`, but is different since the `totalShares` has already * been decremented. Specifically, notice how we use `priorTotalShares` here instead of `totalShares`. */ // account for virtual shares and balance uint256 virtualPriorTotalShares = priorTotalShares + SHARES_OFFSET; uint256 virtualTokenBalance = _tokenBalance() + BALANCE_OFFSET; // calculate ratio based on virtual shares and balance, being careful to multiply before dividing uint256 amountToSend = (virtualTokenBalance * amountShares) / virtualPriorTotalShares; // Decrease the `totalShares` value to reflect the withdrawal totalShares = priorTotalShares - amountShares; _afterWithdrawal(recipient, token, amountToSend); } /** * @notice Called in the external `deposit` function, before any logic is executed. Expected to be overridden if strategies want such logic. * @param token The token being deposited * @param amount The amount of `token` being deposited */ function _beforeDeposit(IERC20 token, uint256 amount) internal virtual { require(token == underlyingToken, "StrategyBase.deposit: Can only deposit underlyingToken"); } /** * @notice Called in the external `withdraw` function, before any logic is executed. Expected to be overridden if strategies want such logic. * @param recipient The address that will receive the withdrawn tokens * @param token The token being withdrawn * @param amountShares The amount of shares being withdrawn */ function _beforeWithdrawal(address recipient, IERC20 token, uint256 amountShares) internal virtual { require(token == underlyingToken, "StrategyBase.withdraw: Can only withdraw the strategy token"); } /** * @notice Transfers tokens to the recipient after a withdrawal is processed * @dev Called in the external `withdraw` function after all logic is executed * @param recipient The destination of the tokens * @param token The ERC20 being transferred * @param amountToSend The amount of `token` to transfer */ function _afterWithdrawal(address recipient, IERC20 token, uint256 amountToSend) internal virtual { token.safeTransfer(recipient, amountToSend); } /** * @notice Currently returns a brief string explaining the strategy's goal & purpose, but for more complex * strategies, may be a link to metadata that explains in more detail. */ function explanation() external pure virtual override returns (string memory) { return "Base Strategy implementation to inherit from for more complex implementations"; } /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlying`, this function guarantees no state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlyingView(uint256 amountShares) public view virtual override returns (uint256) { // account for virtual shares and balance uint256 virtualTotalShares = totalShares + SHARES_OFFSET; uint256 virtualTokenBalance = _tokenBalance() + BALANCE_OFFSET; // calculate ratio based on virtual shares and balance, being careful to multiply before dividing return (virtualTokenBalance * amountShares) / virtualTotalShares; } /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlyingView`, this function **may** make state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlying(uint256 amountShares) public view virtual override returns (uint256) { return sharesToUnderlyingView(amountShares); } /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToShares`, this function guarantees no state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToSharesView(uint256 amountUnderlying) public view virtual returns (uint256) { // account for virtual shares and balance uint256 virtualTotalShares = totalShares + SHARES_OFFSET; uint256 virtualTokenBalance = _tokenBalance() + BALANCE_OFFSET; // calculate ratio based on virtual shares and balance, being careful to multiply before dividing return (amountUnderlying * virtualTotalShares) / virtualTokenBalance; } /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToSharesView`, this function **may** make state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToShares(uint256 amountUnderlying) external view virtual returns (uint256) { return underlyingToSharesView(amountUnderlying); } /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlying`, this function guarantees no state modifications */ function userUnderlyingView(address user) external view virtual returns (uint256) { return sharesToUnderlyingView(shares(user)); } /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlyingView`, this function **may** make state modifications */ function userUnderlying(address user) external virtual returns (uint256) { return sharesToUnderlying(shares(user)); } /** * @notice convenience function for fetching the current total shares of `user` in this strategy, by * querying the `strategyManager` contract */ function shares(address user) public view virtual returns (uint256) { return strategyManager.stakerStrategyShares(user, IStrategy(address(this))); } /// @notice Internal function used to fetch this contract's current balance of `underlyingToken`. // slither-disable-next-line dead-code function _tokenBalance() internal view virtual returns (uint256) { return underlyingToken.balanceOf(address(this)); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[48] private __gap; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IEigen is IERC20 { /** * @notice This function allows the owner to set the allowedFrom status of an address * @param from the address whose allowedFrom status is being set * @param isAllowedFrom the new allowedFrom status */ function setAllowedFrom(address from, bool isAllowedFrom) external; /** * @notice This function allows the owner to set the allowedTo status of an address * @param to the address whose allowedTo status is being set * @param isAllowedTo the new allowedTo status */ function setAllowedTo(address to, bool isAllowedTo) external; /** * @notice Allows the owner to disable transfer restrictions */ function disableTransferRestrictions() external; /** * @notice This function allows minter to mint tokens */ function mint() external; /** * @notice This function allows bEIGEN holders to wrap their tokens into Eigen */ function wrap(uint256 amount) external; /** * @notice This function allows Eigen holders to unwrap their tokens into bEIGEN */ function unwrap(uint256 amount) external; /** * @dev Clock used for flagging checkpoints. Has been overridden to implement timestamp based * checkpoints (and voting). */ function clock() external view returns (uint48); /** * @dev Machine-readable description of the clock as specified in EIP-6372. * Has been overridden to inform callers that this contract uses timestamps instead of block numbers, to match `clock()` */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() external pure returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title Minimal interface for an `Strategy` contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Custom `Strategy` implementations may expand extensively on this interface. */ interface IStrategy { /** * @notice Used to deposit tokens into this Strategy * @param token is the ERC20 token being deposited * @param amount is the amount of token being deposited * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * `depositIntoStrategy` function, and individual share balances are recorded in the strategyManager as well. * @return newShares is the number of new shares issued at the current exchange ratio. */ function deposit(IERC20 token, uint256 amount) external returns (uint256); /** * @notice Used to withdraw tokens from this Strategy, to the `recipient`'s address * @param recipient is the address to receive the withdrawn funds * @param token is the ERC20 token being transferred out * @param amountShares is the amount of shares being withdrawn * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's * other functions, and individual share balances are recorded in the strategyManager as well. */ function withdraw(address recipient, IERC20 token, uint256 amountShares) external; /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlyingView`, this function **may** make state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlying(uint256 amountShares) external returns (uint256); /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToSharesView`, this function **may** make state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of underlying tokens corresponding to the input `amountShares` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToShares(uint256 amountUnderlying) external returns (uint256); /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlyingView`, this function **may** make state modifications */ function userUnderlying(address user) external returns (uint256); /** * @notice convenience function for fetching the current total shares of `user` in this strategy, by * querying the `strategyManager` contract */ function shares(address user) external view returns (uint256); /** * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy. * @notice In contrast to `sharesToUnderlying`, this function guarantees no state modifications * @param amountShares is the amount of shares to calculate its conversion into the underlying token * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function sharesToUnderlyingView(uint256 amountShares) external view returns (uint256); /** * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy. * @notice In contrast to `underlyingToShares`, this function guarantees no state modifications * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares * @return The amount of shares corresponding to the input `amountUnderlying` * @dev Implementation for these functions in particular may vary significantly for different strategies */ function underlyingToSharesView(uint256 amountUnderlying) external view returns (uint256); /** * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in * this strategy. In contrast to `userUnderlying`, this function guarantees no state modifications */ function userUnderlyingView(address user) external view returns (uint256); /// @notice The underlying token for shares in this Strategy function underlyingToken() external view returns (IERC20); /// @notice The total number of extant shares in this Strategy function totalShares() external view returns (uint256); /// @notice Returns either a brief string explaining the strategy's goal & purpose, or a link to metadata that explains in more detail. function explanation() external view returns (string memory); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategyManager.sol"; import "./IDelegationManager.sol"; /** * @title Interface for the primary 'slashing' contract for EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice See the `Slasher` contract itself for implementation details. */ interface ISlasher { // struct used to store information about the current state of an operator's obligations to middlewares they are serving struct MiddlewareTimes { // The update block for the middleware whose most recent update was earliest, i.e. the 'stalest' update out of all middlewares the operator is serving uint32 stalestUpdateBlock; // The latest 'serveUntilBlock' from all of the middleware that the operator is serving uint32 latestServeUntilBlock; } // struct used to store details relevant to a single middleware that an operator has opted-in to serving struct MiddlewareDetails { // the block at which the contract begins being able to finalize the operator's registration with the service via calling `recordFirstStakeUpdate` uint32 registrationMayBeginAtBlock; // the block before which the contract is allowed to slash the user uint32 contractCanSlashOperatorUntilBlock; // the block at which the middleware's view of the operator's stake was most recently updated uint32 latestUpdateBlock; } /// @notice Emitted when a middleware times is added to `operator`'s array. event MiddlewareTimesAdded( address operator, uint256 index, uint32 stalestUpdateBlock, uint32 latestServeUntilBlock ); /// @notice Emitted when `operator` begins to allow `contractAddress` to slash them. event OptedIntoSlashing(address indexed operator, address indexed contractAddress); /// @notice Emitted when `contractAddress` signals that it will no longer be able to slash `operator` after the `contractCanSlashOperatorUntilBlock`. event SlashingAbilityRevoked( address indexed operator, address indexed contractAddress, uint32 contractCanSlashOperatorUntilBlock ); /** * @notice Emitted when `slashingContract` 'freezes' the `slashedOperator`. * @dev The `slashingContract` must have permission to slash the `slashedOperator`, i.e. `canSlash(slasherOperator, slashingContract)` must return 'true'. */ event OperatorFrozen(address indexed slashedOperator, address indexed slashingContract); /// @notice Emitted when `previouslySlashedAddress` is 'unfrozen', allowing them to again move deposited funds within EigenLayer. event FrozenStatusReset(address indexed previouslySlashedAddress); /** * @notice Gives the `contractAddress` permission to slash the funds of the caller. * @dev Typically, this function must be called prior to registering for a middleware. */ function optIntoSlashing(address contractAddress) external; /** * @notice Used for 'slashing' a certain operator. * @param toBeFrozen The operator to be frozen. * @dev Technically the operator is 'frozen' (hence the name of this function), and then subject to slashing pending a decision by a human-in-the-loop. * @dev The operator must have previously given the caller (which should be a contract) the ability to slash them, through a call to `optIntoSlashing`. */ function freezeOperator(address toBeFrozen) external; /** * @notice Removes the 'frozen' status from each of the `frozenAddresses` * @dev Callable only by the contract owner (i.e. governance). */ function resetFrozenStatus(address[] calldata frozenAddresses) external; /** * @notice this function is a called by middlewares during an operator's registration to make sure the operator's stake at registration * is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at the current block is slashable * @dev adds the middleware's slashing contract to the operator's linked list */ function recordFirstStakeUpdate(address operator, uint32 serveUntilBlock) external; /** * @notice this function is a called by middlewares during a stake update for an operator (perhaps to free pending withdrawals) * to make sure the operator's stake at updateBlock is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param updateBlock the block for which the stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at updateBlock is slashable * @param insertAfter the element of the operators linked list that the currently updating middleware should be inserted after * @dev insertAfter should be calculated offchain before making the transaction that calls this. this is subject to race conditions, * but it is anticipated to be rare and not detrimental. */ function recordStakeUpdate( address operator, uint32 updateBlock, uint32 serveUntilBlock, uint256 insertAfter ) external; /** * @notice this function is a called by middlewares during an operator's deregistration to make sure the operator's stake at deregistration * is slashable until serveUntil * @param operator the operator whose stake update is being recorded * @param serveUntilBlock the block until which the operator's stake at the current block is slashable * @dev removes the middleware's slashing contract to the operator's linked list and revokes the middleware's (i.e. caller's) ability to * slash `operator` once `serveUntil` is reached */ function recordLastStakeUpdateAndRevokeSlashingAbility(address operator, uint32 serveUntilBlock) external; /// @notice The StrategyManager contract of EigenLayer function strategyManager() external view returns (IStrategyManager); /// @notice The DelegationManager contract of EigenLayer function delegation() external view returns (IDelegationManager); /** * @notice Used to determine whether `staker` is actively 'frozen'. If a staker is frozen, then they are potentially subject to * slashing of their funds, and cannot cannot deposit or withdraw from the strategyManager until the slashing process is completed * and the staker's status is reset (to 'unfrozen'). * @param staker The staker of interest. * @return Returns 'true' if `staker` themselves has their status set to frozen, OR if the staker is delegated * to an operator who has their status set to frozen. Otherwise returns 'false'. */ function isFrozen(address staker) external view returns (bool); /// @notice Returns true if `slashingContract` is currently allowed to slash `toBeSlashed`. function canSlash(address toBeSlashed, address slashingContract) external view returns (bool); /// @notice Returns the block until which `serviceContract` is allowed to slash the `operator`. function contractCanSlashOperatorUntilBlock( address operator, address serviceContract ) external view returns (uint32); /// @notice Returns the block at which the `serviceContract` last updated its view of the `operator`'s stake function latestUpdateBlock(address operator, address serviceContract) external view returns (uint32); /// @notice A search routine for finding the correct input value of `insertAfter` to `recordStakeUpdate` / `_updateMiddlewareList`. function getCorrectValueForInsertAfter(address operator, uint32 updateBlock) external view returns (uint256); /** * @notice Returns 'true' if `operator` can currently complete a withdrawal started at the `withdrawalStartBlock`, with `middlewareTimesIndex` used * to specify the index of a `MiddlewareTimes` struct in the operator's list (i.e. an index in `operatorToMiddlewareTimes[operator]`). The specified * struct is consulted as proof of the `operator`'s ability (or lack thereof) to complete the withdrawal. * This function will return 'false' if the operator cannot currently complete a withdrawal started at the `withdrawalStartBlock`, *or* in the event * that an incorrect `middlewareTimesIndex` is supplied, even if one or more correct inputs exist. * @param operator Either the operator who queued the withdrawal themselves, or if the withdrawing party is a staker who delegated to an operator, * this address is the operator *who the staker was delegated to* at the time of the `withdrawalStartBlock`. * @param withdrawalStartBlock The block number at which the withdrawal was initiated. * @param middlewareTimesIndex Indicates an index in `operatorToMiddlewareTimes[operator]` to consult as proof of the `operator`'s ability to withdraw * @dev The correct `middlewareTimesIndex` input should be computable off-chain. */ function canWithdraw( address operator, uint32 withdrawalStartBlock, uint256 middlewareTimesIndex ) external returns (bool); /** * operator => * [ * ( * the least recent update block of all of the middlewares it's serving/served, * latest time that the stake bonded at that update needed to serve until * ) * ] */ function operatorToMiddlewareTimes( address operator, uint256 arrayIndex ) external view returns (MiddlewareTimes memory); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator].length` function middlewareTimesLength(address operator) external view returns (uint256); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].stalestUpdateBlock`. function getMiddlewareTimesIndexStalestUpdateBlock(address operator, uint32 index) external view returns (uint32); /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].latestServeUntil`. function getMiddlewareTimesIndexServeUntilBlock(address operator, uint32 index) external view returns (uint32); /// @notice Getter function for fetching `_operatorToWhitelistedContractsByUpdate[operator].size`. function operatorWhitelistedContractsLinkedListSize(address operator) external view returns (uint256); /// @notice Getter function for fetching a single node in the operator's linked list (`_operatorToWhitelistedContractsByUpdate[operator]`). function operatorWhitelistedContractsLinkedListEntry( address operator, address node ) external view returns (bool, uint256, uint256); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "./IStrategy.sol"; import "./ISignatureUtils.sol"; import "./IStrategyManager.sol"; /** * @title DelegationManager * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice This is the contract for delegation in EigenLayer. The main functionalities of this contract are * - enabling anyone to register as an operator in EigenLayer * - allowing operators to specify parameters related to stakers who delegate to them * - enabling any staker to delegate its stake to the operator of its choice (a given staker can only delegate to a single operator at a time) * - enabling a staker to undelegate its assets from the operator it is delegated to (performed as part of the withdrawal process, initiated through the StrategyManager) */ interface IDelegationManager is ISignatureUtils { // @notice Struct used for storing information about a single operator who has registered with EigenLayer struct OperatorDetails { // @notice address to receive the rewards that the operator earns via serving applications built on EigenLayer. address earningsReceiver; /** * @notice Address to verify signatures when a staker wishes to delegate to the operator, as well as controlling "forced undelegations". * @dev Signature verification follows these rules: * 1) If this address is left as address(0), then any staker will be free to delegate to the operator, i.e. no signature verification will be performed. * 2) If this address is an EOA (i.e. it has no code), then we follow standard ECDSA signature verification for delegations to the operator. * 3) If this address is a contract (i.e. it has code) then we forward a call to the contract and verify that it returns the correct EIP-1271 "magic value". */ address delegationApprover; /** * @notice A minimum delay -- measured in blocks -- enforced between: * 1) the operator signalling their intent to register for a service, via calling `Slasher.optIntoSlashing` * and * 2) the operator completing registration for the service, via the service ultimately calling `Slasher.recordFirstStakeUpdate` * @dev note that for a specific operator, this value *cannot decrease*, i.e. if the operator wishes to modify their OperatorDetails, * then they are only allowed to either increase this value or keep it the same. */ uint32 stakerOptOutWindowBlocks; } /** * @notice Abstract struct used in calculating an EIP712 signature for a staker to approve that they (the staker themselves) delegate to a specific operator. * @dev Used in computing the `STAKER_DELEGATION_TYPEHASH` and as a reference in the computation of the stakerDigestHash in the `delegateToBySignature` function. */ struct StakerDelegation { // the staker who is delegating address staker; // the operator being delegated to address operator; // the staker's nonce uint256 nonce; // the expiration timestamp (UTC) of the signature uint256 expiry; } /** * @notice Abstract struct used in calculating an EIP712 signature for an operator's delegationApprover to approve that a specific staker delegate to the operator. * @dev Used in computing the `DELEGATION_APPROVAL_TYPEHASH` and as a reference in the computation of the approverDigestHash in the `_delegate` function. */ struct DelegationApproval { // the staker who is delegating address staker; // the operator being delegated to address operator; // the operator's provided salt bytes32 salt; // the expiration timestamp (UTC) of the signature uint256 expiry; } /** * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored. * In functions that operate on existing queued withdrawals -- e.g. completeQueuedWithdrawal`, the data is resubmitted and the hash of the submitted * data is computed by `calculateWithdrawalRoot` and checked against the stored hash in order to confirm the integrity of the submitted data. */ struct Withdrawal { // The address that originated the Withdrawal address staker; // The address that the staker was delegated to at the time that the Withdrawal was created address delegatedTo; // The address that can complete the Withdrawal + will receive funds when completing the withdrawal address withdrawer; // Nonce used to guarantee that otherwise identical withdrawals have unique hashes uint256 nonce; // Block number when the Withdrawal was created uint32 startBlock; // Array of strategies that the Withdrawal contains IStrategy[] strategies; // Array containing the amount of shares in each Strategy in the `strategies` array uint256[] shares; } struct QueuedWithdrawalParams { // Array of strategies that the QueuedWithdrawal contains IStrategy[] strategies; // Array containing the amount of shares in each Strategy in the `strategies` array uint256[] shares; // The address of the withdrawer address withdrawer; } // @notice Emitted when a new operator registers in EigenLayer and provides their OperatorDetails. event OperatorRegistered(address indexed operator, OperatorDetails operatorDetails); /// @notice Emitted when an operator updates their OperatorDetails to @param newOperatorDetails event OperatorDetailsModified(address indexed operator, OperatorDetails newOperatorDetails); /** * @notice Emitted when @param operator indicates that they are updating their MetadataURI string * @dev Note that these strings are *never stored in storage* and are instead purely emitted in events for off-chain indexing */ event OperatorMetadataURIUpdated(address indexed operator, string metadataURI); /// @notice Emitted whenever an operator's shares are increased for a given strategy. Note that shares is the delta in the operator's shares. event OperatorSharesIncreased(address indexed operator, address staker, IStrategy strategy, uint256 shares); /// @notice Emitted whenever an operator's shares are decreased for a given strategy. Note that shares is the delta in the operator's shares. event OperatorSharesDecreased(address indexed operator, address staker, IStrategy strategy, uint256 shares); /// @notice Emitted when @param staker delegates to @param operator. event StakerDelegated(address indexed staker, address indexed operator); /// @notice Emitted when @param staker undelegates from @param operator. event StakerUndelegated(address indexed staker, address indexed operator); /// @notice Emitted when @param staker is undelegated via a call not originating from the staker themself event StakerForceUndelegated(address indexed staker, address indexed operator); /** * @notice Emitted when a new withdrawal is queued. * @param withdrawalRoot Is the hash of the `withdrawal`. * @param withdrawal Is the withdrawal itself. */ event WithdrawalQueued(bytes32 withdrawalRoot, Withdrawal withdrawal); /// @notice Emitted when a queued withdrawal is completed event WithdrawalCompleted(bytes32 withdrawalRoot); /// @notice Emitted when a queued withdrawal is *migrated* from the StrategyManager to the DelegationManager event WithdrawalMigrated(bytes32 oldWithdrawalRoot, bytes32 newWithdrawalRoot); /// @notice Emitted when the `minWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`. event MinWithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue); /// @notice Emitted when the `strategyWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`. event StrategyWithdrawalDelayBlocksSet(IStrategy strategy, uint256 previousValue, uint256 newValue); /** * @notice Registers the caller as an operator in EigenLayer. * @param registeringOperatorDetails is the `OperatorDetails` for the operator. * @param metadataURI is a URI for the operator's metadata, i.e. a link providing more details on the operator. * * @dev Once an operator is registered, they cannot 'deregister' as an operator, and they will forever be considered "delegated to themself". * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0). * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event */ function registerAsOperator( OperatorDetails calldata registeringOperatorDetails, string calldata metadataURI ) external; /** * @notice Updates an operator's stored `OperatorDetails`. * @param newOperatorDetails is the updated `OperatorDetails` for the operator, to replace their current OperatorDetails`. * * @dev The caller must have previously registered as an operator in EigenLayer. * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0). */ function modifyOperatorDetails(OperatorDetails calldata newOperatorDetails) external; /** * @notice Called by an operator to emit an `OperatorMetadataURIUpdated` event indicating the information has updated. * @param metadataURI The URI for metadata associated with an operator * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event */ function updateOperatorMetadataURI(string calldata metadataURI) external; /** * @notice Caller delegates their stake to an operator. * @param operator The account (`msg.sender`) is delegating its assets to for use in serving applications built on EigenLayer. * @param approverSignatureAndExpiry Verifies the operator approves of this delegation * @param approverSalt A unique single use value tied to an individual signature. * @dev The approverSignatureAndExpiry is used in the event that: * 1) the operator's `delegationApprover` address is set to a non-zero value. * AND * 2) neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator * or their delegationApprover is the `msg.sender`, then approval is assumed. * @dev In the event that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input * in this case to save on complexity + gas costs */ function delegateTo( address operator, SignatureWithExpiry memory approverSignatureAndExpiry, bytes32 approverSalt ) external; /** * @notice Caller delegates a staker's stake to an operator with valid signatures from both parties. * @param staker The account delegating stake to an `operator` account * @param operator The account (`staker`) is delegating its assets to for use in serving applications built on EigenLayer. * @param stakerSignatureAndExpiry Signed data from the staker authorizing delegating stake to an operator * @param approverSignatureAndExpiry is a parameter that will be used for verifying that the operator approves of this delegation action in the event that: * @param approverSalt Is a salt used to help guarantee signature uniqueness. Each salt can only be used once by a given approver. * * @dev If `staker` is an EOA, then `stakerSignature` is verified to be a valid ECDSA stakerSignature from `staker`, indicating their intention for this action. * @dev If `staker` is a contract, then `stakerSignature` will be checked according to EIP-1271. * @dev the operator's `delegationApprover` address is set to a non-zero value. * @dev neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator or their delegationApprover * is the `msg.sender`, then approval is assumed. * @dev This function will revert if the current `block.timestamp` is equal to or exceeds the expiry * @dev In the case that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input * in this case to save on complexity + gas costs */ function delegateToBySignature( address staker, address operator, SignatureWithExpiry memory stakerSignatureAndExpiry, SignatureWithExpiry memory approverSignatureAndExpiry, bytes32 approverSalt ) external; /** * @notice Undelegates the staker from the operator who they are delegated to. Puts the staker into the "undelegation limbo" mode of the EigenPodManager * and queues a withdrawal of all of the staker's shares in the StrategyManager (to the staker), if necessary. * @param staker The account to be undelegated. * @return withdrawalRoot The root of the newly queued withdrawal, if a withdrawal was queued. Otherwise just bytes32(0). * * @dev Reverts if the `staker` is also an operator, since operators are not allowed to undelegate from themselves. * @dev Reverts if the caller is not the staker, nor the operator who the staker is delegated to, nor the operator's specified "delegationApprover" * @dev Reverts if the `staker` is already undelegated. */ function undelegate(address staker) external returns (bytes32[] memory withdrawalRoot); /** * Allows a staker to withdraw some shares. Withdrawn shares/strategies are immediately removed * from the staker. If the staker is delegated, withdrawn shares/strategies are also removed from * their operator. * * All withdrawn shares/strategies are placed in a queue and can be fully withdrawn after a delay. */ function queueWithdrawals( QueuedWithdrawalParams[] calldata queuedWithdrawalParams ) external returns (bytes32[] memory); /** * @notice Used to complete the specified `withdrawal`. The caller must match `withdrawal.withdrawer` * @param withdrawal The Withdrawal to complete. * @param tokens Array in which the i-th entry specifies the `token` input to the 'withdraw' function of the i-th Strategy in the `withdrawal.strategies` array. * This input can be provided with zero length if `receiveAsTokens` is set to 'false' (since in that case, this input will be unused) * @param middlewareTimesIndex is the index in the operator that the staker who triggered the withdrawal was delegated to's middleware times array * @param receiveAsTokens If true, the shares specified in the withdrawal will be withdrawn from the specified strategies themselves * and sent to the caller, through calls to `withdrawal.strategies[i].withdraw`. If false, then the shares in the specified strategies * will simply be transferred to the caller directly. * @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw` * @dev beaconChainETHStrategy shares are non-transferrable, so if `receiveAsTokens = false` and `withdrawal.withdrawer != withdrawal.staker`, note that * any beaconChainETHStrategy shares in the `withdrawal` will be _returned to the staker_, rather than transferred to the withdrawer, unlike shares in * any other strategies, which will be transferred to the withdrawer. */ function completeQueuedWithdrawal( Withdrawal calldata withdrawal, IERC20[] calldata tokens, uint256 middlewareTimesIndex, bool receiveAsTokens ) external; /** * @notice Array-ified version of `completeQueuedWithdrawal`. * Used to complete the specified `withdrawals`. The function caller must match `withdrawals[...].withdrawer` * @param withdrawals The Withdrawals to complete. * @param tokens Array of tokens for each Withdrawal. See `completeQueuedWithdrawal` for the usage of a single array. * @param middlewareTimesIndexes One index to reference per Withdrawal. See `completeQueuedWithdrawal` for the usage of a single index. * @param receiveAsTokens Whether or not to complete each withdrawal as tokens. See `completeQueuedWithdrawal` for the usage of a single boolean. * @dev See `completeQueuedWithdrawal` for relevant dev tags */ function completeQueuedWithdrawals( Withdrawal[] calldata withdrawals, IERC20[][] calldata tokens, uint256[] calldata middlewareTimesIndexes, bool[] calldata receiveAsTokens ) external; /** * @notice Increases a staker's delegated share balance in a strategy. * @param staker The address to increase the delegated shares for their operator. * @param strategy The strategy in which to increase the delegated shares. * @param shares The number of shares to increase. * * @dev *If the staker is actively delegated*, then increases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing. * @dev Callable only by the StrategyManager or EigenPodManager. */ function increaseDelegatedShares( address staker, IStrategy strategy, uint256 shares ) external; /** * @notice Decreases a staker's delegated share balance in a strategy. * @param staker The address to increase the delegated shares for their operator. * @param strategy The strategy in which to decrease the delegated shares. * @param shares The number of shares to decrease. * * @dev *If the staker is actively delegated*, then decreases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing. * @dev Callable only by the StrategyManager or EigenPodManager. */ function decreaseDelegatedShares( address staker, IStrategy strategy, uint256 shares ) external; /** * @notice returns the address of the operator that `staker` is delegated to. * @notice Mapping: staker => operator whom the staker is currently delegated to. * @dev Note that returning address(0) indicates that the staker is not actively delegated to any operator. */ function delegatedTo(address staker) external view returns (address); /** * @notice Returns the OperatorDetails struct associated with an `operator`. */ function operatorDetails(address operator) external view returns (OperatorDetails memory); /* * @notice Returns the earnings receiver address for an operator */ function earningsReceiver(address operator) external view returns (address); /** * @notice Returns the delegationApprover account for an operator */ function delegationApprover(address operator) external view returns (address); /** * @notice Returns the stakerOptOutWindowBlocks for an operator */ function stakerOptOutWindowBlocks(address operator) external view returns (uint256); /** * @notice Given array of strategies, returns array of shares for the operator */ function getOperatorShares( address operator, IStrategy[] memory strategies ) external view returns (uint256[] memory); /** * @notice Given a list of strategies, return the minimum number of blocks that must pass to withdraw * from all the inputted strategies. Return value is >= minWithdrawalDelayBlocks as this is the global min withdrawal delay. * @param strategies The strategies to check withdrawal delays for */ function getWithdrawalDelay(IStrategy[] calldata strategies) external view returns (uint256); /** * @notice returns the total number of shares in `strategy` that are delegated to `operator`. * @notice Mapping: operator => strategy => total number of shares in the strategy delegated to the operator. * @dev By design, the following invariant should hold for each Strategy: * (operator's shares in delegation manager) = sum (shares above zero of all stakers delegated to operator) * = sum (delegateable shares of all stakers delegated to the operator) */ function operatorShares(address operator, IStrategy strategy) external view returns (uint256); /** * @notice Returns 'true' if `staker` *is* actively delegated, and 'false' otherwise. */ function isDelegated(address staker) external view returns (bool); /** * @notice Returns true is an operator has previously registered for delegation. */ function isOperator(address operator) external view returns (bool); /// @notice Mapping: staker => number of signed delegation nonces (used in `delegateToBySignature`) from the staker that the contract has already checked function stakerNonce(address staker) external view returns (uint256); /** * @notice Mapping: delegationApprover => 32-byte salt => whether or not the salt has already been used by the delegationApprover. * @dev Salts are used in the `delegateTo` and `delegateToBySignature` functions. Note that these functions only process the delegationApprover's * signature + the provided salt if the operator being delegated to has specified a nonzero address as their `delegationApprover`. */ function delegationApproverSaltIsSpent(address _delegationApprover, bytes32 salt) external view returns (bool); /** * @notice Minimum delay enforced by this contract for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner, * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced). * Note that strategies each have a separate withdrawal delay, which can be greater than this value. So the minimum number of blocks that must pass * to withdraw a strategy is MAX(minWithdrawalDelayBlocks, strategyWithdrawalDelayBlocks[strategy]) */ function minWithdrawalDelayBlocks() external view returns (uint256); /** * @notice Minimum delay enforced by this contract per Strategy for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner, * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced). */ function strategyWithdrawalDelayBlocks(IStrategy strategy) external view returns (uint256); /** * @notice Calculates the digestHash for a `staker` to sign to delegate to an `operator` * @param staker The signing staker * @param operator The operator who is being delegated to * @param expiry The desired expiry time of the staker's signature */ function calculateCurrentStakerDelegationDigestHash( address staker, address operator, uint256 expiry ) external view returns (bytes32); /** * @notice Calculates the digest hash to be signed and used in the `delegateToBySignature` function * @param staker The signing staker * @param _stakerNonce The nonce of the staker. In practice we use the staker's current nonce, stored at `stakerNonce[staker]` * @param operator The operator who is being delegated to * @param expiry The desired expiry time of the staker's signature */ function calculateStakerDelegationDigestHash( address staker, uint256 _stakerNonce, address operator, uint256 expiry ) external view returns (bytes32); /** * @notice Calculates the digest hash to be signed by the operator's delegationApprove and used in the `delegateTo` and `delegateToBySignature` functions. * @param staker The account delegating their stake * @param operator The account receiving delegated stake * @param _delegationApprover the operator's `delegationApprover` who will be signing the delegationHash (in general) * @param approverSalt A unique and single use value associated with the approver signature. * @param expiry Time after which the approver's signature becomes invalid */ function calculateDelegationApprovalDigestHash( address staker, address operator, address _delegationApprover, bytes32 approverSalt, uint256 expiry ) external view returns (bytes32); /// @notice The EIP-712 typehash for the contract's domain function DOMAIN_TYPEHASH() external view returns (bytes32); /// @notice The EIP-712 typehash for the StakerDelegation struct used by the contract function STAKER_DELEGATION_TYPEHASH() external view returns (bytes32); /// @notice The EIP-712 typehash for the DelegationApproval struct used by the contract function DELEGATION_APPROVAL_TYPEHASH() external view returns (bytes32); /** * @notice Getter function for the current EIP-712 domain separator for this contract. * * @dev The domain separator will change in the event of a fork that changes the ChainID. * @dev By introducing a domain separator the DApp developers are guaranteed that there can be no signature collision. * for more detailed information please read EIP-712. */ function domainSeparator() external view returns (bytes32); /// @notice Mapping: staker => cumulative number of queued withdrawals they have ever initiated. /// @dev This only increments (doesn't decrement), and is used to help ensure that otherwise identical withdrawals have unique hashes. function cumulativeWithdrawalsQueued(address staker) external view returns (uint256); /// @notice Returns the keccak256 hash of `withdrawal`. function calculateWithdrawalRoot(Withdrawal memory withdrawal) external pure returns (bytes32); function migrateQueuedWithdrawals(IStrategyManager.DeprecatedStruct_QueuedWithdrawal[] memory withdrawalsToQueue) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol"; import "./IETHPOSDeposit.sol"; import "./IStrategyManager.sol"; import "./IEigenPod.sol"; import "./IBeaconChainOracle.sol"; import "./IPausable.sol"; import "./ISlasher.sol"; import "./IStrategy.sol"; /** * @title Interface for factory that creates and manages solo staking pods that have their withdrawal credentials pointed to EigenLayer. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IEigenPodManager is IPausable { /// @notice Emitted to notify the update of the beaconChainOracle address event BeaconOracleUpdated(address indexed newOracleAddress); /// @notice Emitted to notify the deployment of an EigenPod event PodDeployed(address indexed eigenPod, address indexed podOwner); /// @notice Emitted to notify a deposit of beacon chain ETH recorded in the strategy manager event BeaconChainETHDeposited(address indexed podOwner, uint256 amount); /// @notice Emitted when the balance of an EigenPod is updated event PodSharesUpdated(address indexed podOwner, int256 sharesDelta); /// @notice Emitted when a withdrawal of beacon chain ETH is completed event BeaconChainETHWithdrawalCompleted( address indexed podOwner, uint256 shares, uint96 nonce, address delegatedAddress, address withdrawer, bytes32 withdrawalRoot ); event DenebForkTimestampUpdated(uint64 newValue); /** * @notice Creates an EigenPod for the sender. * @dev Function will revert if the `msg.sender` already has an EigenPod. * @dev Returns EigenPod address */ function createPod() external returns (address); /** * @notice Stakes for a new beacon chain validator on the sender's EigenPod. * Also creates an EigenPod for the sender if they don't have one already. * @param pubkey The 48 bytes public key of the beacon chain validator. * @param signature The validator's signature of the deposit data. * @param depositDataRoot The root/hash of the deposit data for the validator's deposit. */ function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable; /** * @notice Changes the `podOwner`'s shares by `sharesDelta` and performs a call to the DelegationManager * to ensure that delegated shares are also tracked correctly * @param podOwner is the pod owner whose balance is being updated. * @param sharesDelta is the change in podOwner's beaconChainETHStrategy shares * @dev Callable only by the podOwner's EigenPod contract. * @dev Reverts if `sharesDelta` is not a whole Gwei amount */ function recordBeaconChainETHBalanceUpdate(address podOwner, int256 sharesDelta) external; /** * @notice Updates the oracle contract that provides the beacon chain state root * @param newBeaconChainOracle is the new oracle contract being pointed to * @dev Callable only by the owner of this contract (i.e. governance) */ function updateBeaconChainOracle(IBeaconChainOracle newBeaconChainOracle) external; /// @notice Returns the address of the `podOwner`'s EigenPod if it has been deployed. function ownerToPod(address podOwner) external view returns (IEigenPod); /// @notice Returns the address of the `podOwner`'s EigenPod (whether it is deployed yet or not). function getPod(address podOwner) external view returns (IEigenPod); /// @notice The ETH2 Deposit Contract function ethPOS() external view returns (IETHPOSDeposit); /// @notice Beacon proxy to which the EigenPods point function eigenPodBeacon() external view returns (IBeacon); /// @notice Oracle contract that provides updates to the beacon chain's state function beaconChainOracle() external view returns (IBeaconChainOracle); /// @notice Returns the beacon block root at `timestamp`. Reverts if the Beacon block root at `timestamp` has not yet been finalized. function getBlockRootAtTimestamp(uint64 timestamp) external view returns (bytes32); /// @notice EigenLayer's StrategyManager contract function strategyManager() external view returns (IStrategyManager); /// @notice EigenLayer's Slasher contract function slasher() external view returns (ISlasher); /// @notice Returns 'true' if the `podOwner` has created an EigenPod, and 'false' otherwise. function hasPod(address podOwner) external view returns (bool); /// @notice Returns the number of EigenPods that have been created function numPods() external view returns (uint256); /** * @notice Mapping from Pod owner owner to the number of shares they have in the virtual beacon chain ETH strategy. * @dev The share amount can become negative. This is necessary to accommodate the fact that a pod owner's virtual beacon chain ETH shares can * decrease between the pod owner queuing and completing a withdrawal. * When the pod owner's shares would otherwise increase, this "deficit" is decreased first _instead_. * Likewise, when a withdrawal is completed, this "deficit" is decreased and the withdrawal amount is decreased; We can think of this * as the withdrawal "paying off the deficit". */ function podOwnerShares(address podOwner) external view returns (int256); /// @notice returns canonical, virtual beaconChainETH strategy function beaconChainETHStrategy() external view returns (IStrategy); /** * @notice Used by the DelegationManager to remove a pod owner's shares while they're in the withdrawal queue. * Simply decreases the `podOwner`'s shares by `shares`, down to a minimum of zero. * @dev This function reverts if it would result in `podOwnerShares[podOwner]` being less than zero, i.e. it is forbidden for this function to * result in the `podOwner` incurring a "share deficit". This behavior prevents a Staker from queuing a withdrawal which improperly removes excessive * shares from the operator to whom the staker is delegated. * @dev Reverts if `shares` is not a whole Gwei amount */ function removeShares(address podOwner, uint256 shares) external; /** * @notice Increases the `podOwner`'s shares by `shares`, paying off deficit if possible. * Used by the DelegationManager to award a pod owner shares on exiting the withdrawal queue * @dev Returns the number of shares added to `podOwnerShares[podOwner]` above zero, which will be less than the `shares` input * in the event that the podOwner has an existing shares deficit (i.e. `podOwnerShares[podOwner]` starts below zero) * @dev Reverts if `shares` is not a whole Gwei amount */ function addShares(address podOwner, uint256 shares) external returns (uint256); /** * @notice Used by the DelegationManager to complete a withdrawal, sending tokens to some destination address * @dev Prioritizes decreasing the podOwner's share deficit, if they have one * @dev Reverts if `shares` is not a whole Gwei amount */ function withdrawSharesAsTokens(address podOwner, address destination, uint256 shares) external; /** * @notice the deneb hard fork timestamp used to determine which proof path to use for proving a withdrawal */ function denebForkTimestamp() external view returns (uint64); /** * setting the deneb hard fork timestamp by the eigenPodManager owner * @dev this function is designed to be called twice. Once, it is set to type(uint64).max * prior to the actual deneb fork timestamp being set, and then the second time it is set * to the actual deneb fork timestamp. */ function setDenebForkTimestamp(uint64 newDenebForkTimestamp) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.12; import "../interfaces/IPausable.sol"; /** * @title Adds pausability to a contract, with pausing & unpausing controlled by the `pauser` and `unpauser` of a PauserRegistry contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Contracts that inherit from this contract may define their own `pause` and `unpause` (and/or related) functions. * These functions should be permissioned as "onlyPauser" which defers to a `PauserRegistry` for determining access control. * @dev Pausability is implemented using a uint256, which allows up to 256 different single bit-flags; each bit can potentially pause different functionality. * Inspiration for this was taken from the NearBridge design here https://etherscan.io/address/0x3FEFc5A4B1c02f21cBc8D3613643ba0635b9a873#code. * For the `pause` and `unpause` functions we've implemented, if you pause, you can only flip (any number of) switches to on/1 (aka "paused"), and if you unpause, * you can only flip (any number of) switches to off/0 (aka "paused"). * If you want a pauseXYZ function that just flips a single bit / "pausing flag", it will: * 1) 'bit-wise and' (aka `&`) a flag with the current paused state (as a uint256) * 2) update the paused state to this new value * @dev We note as well that we have chosen to identify flags by their *bit index* as opposed to their numerical value, so, e.g. defining `DEPOSITS_PAUSED = 3` * indicates specifically that if the *third bit* of `_paused` is flipped -- i.e. it is a '1' -- then deposits should be paused */ contract Pausable is IPausable { /// @notice Address of the `PauserRegistry` contract that this contract defers to for determining access control (for pausing). IPauserRegistry public pauserRegistry; /// @dev whether or not the contract is currently paused uint256 private _paused; uint256 internal constant UNPAUSE_ALL = 0; uint256 internal constant PAUSE_ALL = type(uint256).max; /// @notice modifier onlyPauser() { require(pauserRegistry.isPauser(msg.sender), "msg.sender is not permissioned as pauser"); _; } modifier onlyUnpauser() { require(msg.sender == pauserRegistry.unpauser(), "msg.sender is not permissioned as unpauser"); _; } /// @notice Throws if the contract is paused, i.e. if any of the bits in `_paused` is flipped to 1. modifier whenNotPaused() { require(_paused == 0, "Pausable: contract is paused"); _; } /// @notice Throws if the `indexed`th bit of `_paused` is 1, i.e. if the `index`th pause switch is flipped. modifier onlyWhenNotPaused(uint8 index) { require(!paused(index), "Pausable: index is paused"); _; } /// @notice One-time function for setting the `pauserRegistry` and initializing the value of `_paused`. function _initializePauser(IPauserRegistry _pauserRegistry, uint256 initPausedStatus) internal { require( address(pauserRegistry) == address(0) && address(_pauserRegistry) != address(0), "Pausable._initializePauser: _initializePauser() can only be called once" ); _paused = initPausedStatus; emit Paused(msg.sender, initPausedStatus); _setPauserRegistry(_pauserRegistry); } /** * @notice This function is used to pause an EigenLayer contract's functionality. * It is permissioned to the `pauser` address, which is expected to be a low threshold multisig. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only pause functionality, and thus cannot 'unflip' any bit in `_paused` from 1 to 0. */ function pause(uint256 newPausedStatus) external onlyPauser { // verify that the `newPausedStatus` does not *unflip* any bits (i.e. doesn't unpause anything, all 1 bits remain) require((_paused & newPausedStatus) == _paused, "Pausable.pause: invalid attempt to unpause functionality"); _paused = newPausedStatus; emit Paused(msg.sender, newPausedStatus); } /** * @notice Alias for `pause(type(uint256).max)`. */ function pauseAll() external onlyPauser { _paused = type(uint256).max; emit Paused(msg.sender, type(uint256).max); } /** * @notice This function is used to unpause an EigenLayer contract's functionality. * It is permissioned to the `unpauser` address, which is expected to be a high threshold multisig or governance contract. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only unpause functionality, and thus cannot 'flip' any bit in `_paused` from 0 to 1. */ function unpause(uint256 newPausedStatus) external onlyUnpauser { // verify that the `newPausedStatus` does not *flip* any bits (i.e. doesn't pause anything, all 0 bits remain) require( ((~_paused) & (~newPausedStatus)) == (~_paused), "Pausable.unpause: invalid attempt to pause functionality" ); _paused = newPausedStatus; emit Unpaused(msg.sender, newPausedStatus); } /// @notice Returns the current paused status as a uint256. function paused() public view virtual returns (uint256) { return _paused; } /// @notice Returns 'true' if the `indexed`th bit of `_paused` is 1, and 'false' otherwise function paused(uint8 index) public view virtual returns (bool) { uint256 mask = 1 << index; return ((_paused & mask) == mask); } /// @notice Allows the unpauser to set a new pauser registry function setPauserRegistry(IPauserRegistry newPauserRegistry) external onlyUnpauser { _setPauserRegistry(newPauserRegistry); } /// internal function for setting pauser registry function _setPauserRegistry(IPauserRegistry newPauserRegistry) internal { require( address(newPauserRegistry) != address(0), "Pausable._setPauserRegistry: newPauserRegistry cannot be the zero address" ); emit PauserRegistrySet(pauserRegistry, newPauserRegistry); pauserRegistry = newPauserRegistry; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[48] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title The interface for common signature utilities. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface ISignatureUtils { // @notice Struct that bundles together a signature and an expiration time for the signature. Used primarily for stack management. struct SignatureWithExpiry { // the signature itself, formatted as a single bytes object bytes signature; // the expiration timestamp (UTC) of the signature uint256 expiry; } // @notice Struct that bundles together a signature, a salt for uniqueness, and an expiration time for the signature. Used primarily for stack management. struct SignatureWithSaltAndExpiry { // the signature itself, formatted as a single bytes object bytes signature; // the salt used to generate the signature bytes32 salt; // the expiration timestamp (UTC) of the signature uint256 expiry; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.0; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {BeaconProxy} will check that this address is a contract. */ function implementation() external view returns (address); }
// ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━ // ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓ // ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛ // ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃┃━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━ // ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓ // ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛ // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ // SPDX-License-Identifier: CC0-1.0 pragma solidity >=0.5.0; // This interface is designed to be compatible with the Vyper version. /// @notice This is the Ethereum 2.0 deposit contract interface. /// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs interface IETHPOSDeposit { /// @notice A processed deposit event. event DepositEvent(bytes pubkey, bytes withdrawal_credentials, bytes amount, bytes signature, bytes index); /// @notice Submit a Phase 0 DepositData object. /// @param pubkey A BLS12-381 public key. /// @param withdrawal_credentials Commitment to a public key for withdrawals. /// @param signature A BLS12-381 signature. /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object. /// Used as a protection against malformed input. function deposit( bytes calldata pubkey, bytes calldata withdrawal_credentials, bytes calldata signature, bytes32 deposit_data_root ) external payable; /// @notice Query the current deposit root hash. /// @return The deposit root hash. function get_deposit_root() external view returns (bytes32); /// @notice Query the current deposit count. /// @return The deposit count encoded as a little endian 64-bit number. function get_deposit_count() external view returns (bytes memory); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "../libraries/BeaconChainProofs.sol"; import "./IEigenPodManager.sol"; import "./IBeaconChainOracle.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title The implementation contract used for restaking beacon chain ETH on EigenLayer * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice The main functionalities are: * - creating new ETH validators with their withdrawal credentials pointed to this contract * - proving from beacon chain state roots that withdrawal credentials are pointed to this contract * - proving from beacon chain state roots the balances of ETH validators with their withdrawal credentials * pointed to this contract * - updating aggregate balances in the EigenPodManager * - withdrawing eth when withdrawals are initiated * @dev Note that all beacon chain balances are stored as gwei within the beacon chain datastructures. We choose * to account balances in terms of gwei in the EigenPod contract and convert to wei when making calls to other contracts */ interface IEigenPod { enum VALIDATOR_STATUS { INACTIVE, // doesnt exist ACTIVE, // staked on ethpos and withdrawal credentials are pointed to the EigenPod WITHDRAWN // withdrawn from the Beacon Chain } struct ValidatorInfo { // index of the validator in the beacon chain uint64 validatorIndex; // amount of beacon chain ETH restaked on EigenLayer in gwei uint64 restakedBalanceGwei; //timestamp of the validator's most recent balance update uint64 mostRecentBalanceUpdateTimestamp; // status of the validator VALIDATOR_STATUS status; } /** * @notice struct used to store amounts related to proven withdrawals in memory. Used to help * manage stack depth and optimize the number of external calls, when batching withdrawal operations. */ struct VerifiedWithdrawal { // amount to send to a podOwner from a proven withdrawal uint256 amountToSendGwei; // difference in shares to be recorded in the eigenPodManager, as a result of the withdrawal int256 sharesDeltaGwei; } enum PARTIAL_WITHDRAWAL_CLAIM_STATUS { REDEEMED, PENDING, FAILED } /// @notice Emitted when an ETH validator stakes via this eigenPod event EigenPodStaked(bytes pubkey); /// @notice Emitted when an ETH validator's withdrawal credentials are successfully verified to be pointed to this eigenPod event ValidatorRestaked(uint40 validatorIndex); /// @notice Emitted when an ETH validator's balance is proven to be updated. Here newValidatorBalanceGwei // is the validator's balance that is credited on EigenLayer. event ValidatorBalanceUpdated(uint40 validatorIndex, uint64 balanceTimestamp, uint64 newValidatorBalanceGwei); /// @notice Emitted when an ETH validator is prove to have withdrawn from the beacon chain event FullWithdrawalRedeemed( uint40 validatorIndex, uint64 withdrawalTimestamp, address indexed recipient, uint64 withdrawalAmountGwei ); /// @notice Emitted when a partial withdrawal claim is successfully redeemed event PartialWithdrawalRedeemed( uint40 validatorIndex, uint64 withdrawalTimestamp, address indexed recipient, uint64 partialWithdrawalAmountGwei ); /// @notice Emitted when restaked beacon chain ETH is withdrawn from the eigenPod. event RestakedBeaconChainETHWithdrawn(address indexed recipient, uint256 amount); /// @notice Emitted when podOwner enables restaking event RestakingActivated(address indexed podOwner); /// @notice Emitted when ETH is received via the `receive` fallback event NonBeaconChainETHReceived(uint256 amountReceived); /// @notice Emitted when ETH that was previously received via the `receive` fallback is withdrawn event NonBeaconChainETHWithdrawn(address indexed recipient, uint256 amountWithdrawn); /// @notice The max amount of eth, in gwei, that can be restaked per validator function MAX_RESTAKED_BALANCE_GWEI_PER_VALIDATOR() external view returns (uint64); /// @notice the amount of execution layer ETH in this contract that is staked in EigenLayer (i.e. withdrawn from beaconchain but not EigenLayer), function withdrawableRestakedExecutionLayerGwei() external view returns (uint64); /// @notice any ETH deposited into the EigenPod contract via the `receive` fallback function function nonBeaconChainETHBalanceWei() external view returns (uint256); /// @notice Used to initialize the pointers to contracts crucial to the pod's functionality, in beacon proxy construction from EigenPodManager function initialize(address owner) external; /// @notice Called by EigenPodManager when the owner wants to create another ETH validator. function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable; /** * @notice Transfers `amountWei` in ether from this contract to the specified `recipient` address * @notice Called by EigenPodManager to withdrawBeaconChainETH that has been added to the EigenPod's balance due to a withdrawal from the beacon chain. * @dev The podOwner must have already proved sufficient withdrawals, so that this pod's `withdrawableRestakedExecutionLayerGwei` exceeds the * `amountWei` input (when converted to GWEI). * @dev Reverts if `amountWei` is not a whole Gwei amount */ function withdrawRestakedBeaconChainETH(address recipient, uint256 amount) external; /// @notice The single EigenPodManager for EigenLayer function eigenPodManager() external view returns (IEigenPodManager); /// @notice The owner of this EigenPod function podOwner() external view returns (address); /// @notice an indicator of whether or not the podOwner has ever "fully restaked" by successfully calling `verifyCorrectWithdrawalCredentials`. function hasRestaked() external view returns (bool); /** * @notice The latest timestamp at which the pod owner withdrew the balance of the pod, via calling `withdrawBeforeRestaking`. * @dev This variable is only updated when the `withdrawBeforeRestaking` function is called, which can only occur before `hasRestaked` is set to true for this pod. * Proofs for this pod are only valid against Beacon Chain state roots corresponding to timestamps after the stored `mostRecentWithdrawalTimestamp`. */ function mostRecentWithdrawalTimestamp() external view returns (uint64); /// @notice Returns the validatorInfo struct for the provided pubkeyHash function validatorPubkeyHashToInfo(bytes32 validatorPubkeyHash) external view returns (ValidatorInfo memory); /// @notice Returns the validatorInfo struct for the provided pubkey function validatorPubkeyToInfo(bytes calldata validatorPubkey) external view returns (ValidatorInfo memory); ///@notice mapping that tracks proven withdrawals function provenWithdrawal(bytes32 validatorPubkeyHash, uint64 slot) external view returns (bool); /// @notice This returns the status of a given validator function validatorStatus(bytes32 pubkeyHash) external view returns (VALIDATOR_STATUS); /// @notice This returns the status of a given validator pubkey function validatorStatus(bytes calldata validatorPubkey) external view returns (VALIDATOR_STATUS); /** * @notice This function verifies that the withdrawal credentials of validator(s) owned by the podOwner are pointed to * this contract. It also verifies the effective balance of the validator. It verifies the provided proof of the ETH validator against the beacon chain state * root, marks the validator as 'active' in EigenLayer, and credits the restaked ETH in Eigenlayer. * @param oracleTimestamp is the Beacon Chain timestamp whose state root the `proof` will be proven against. * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs * @param withdrawalCredentialProofs is an array of proofs, where each proof proves each ETH validator's balance and withdrawal credentials * against a beacon chain state root * @param validatorFields are the fields of the "Validator Container", refer to consensus specs * for details: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator */ function verifyWithdrawalCredentials( uint64 oracleTimestamp, BeaconChainProofs.StateRootProof calldata stateRootProof, uint40[] calldata validatorIndices, bytes[] calldata withdrawalCredentialProofs, bytes32[][] calldata validatorFields ) external; /** * @notice This function records an update (either increase or decrease) in the pod's balance in the StrategyManager. It also verifies a merkle proof of the validator's current beacon chain balance. * @param oracleTimestamp The oracleTimestamp whose state root the `proof` will be proven against. * Must be within `VERIFY_BALANCE_UPDATE_WINDOW_SECONDS` of the current block. * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs * @param validatorFieldsProofs proofs against the `beaconStateRoot` for each validator in `validatorFields` * @param validatorFields are the fields of the "Validator Container", refer to consensus specs * @dev For more details on the Beacon Chain spec, see: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator */ function verifyBalanceUpdates( uint64 oracleTimestamp, uint40[] calldata validatorIndices, BeaconChainProofs.StateRootProof calldata stateRootProof, bytes[] calldata validatorFieldsProofs, bytes32[][] calldata validatorFields ) external; /** * @notice This function records full and partial withdrawals on behalf of one of the Ethereum validators for this EigenPod * @param oracleTimestamp is the timestamp of the oracle slot that the withdrawal is being proven against * @param withdrawalProofs is the information needed to check the veracity of the block numbers and withdrawals being proven * @param validatorFieldsProofs is the proof of the validator's fields' in the validator tree * @param withdrawalFields are the fields of the withdrawals being proven * @param validatorFields are the fields of the validators being proven */ function verifyAndProcessWithdrawals( uint64 oracleTimestamp, BeaconChainProofs.StateRootProof calldata stateRootProof, BeaconChainProofs.WithdrawalProof[] calldata withdrawalProofs, bytes[] calldata validatorFieldsProofs, bytes32[][] calldata validatorFields, bytes32[][] calldata withdrawalFields ) external; /** * @notice Called by the pod owner to activate restaking by withdrawing * all existing ETH from the pod and preventing further withdrawals via * "withdrawBeforeRestaking()" */ function activateRestaking() external; /// @notice Called by the pod owner to withdraw the balance of the pod when `hasRestaked` is set to false function withdrawBeforeRestaking() external; /// @notice Called by the pod owner to withdraw the nonBeaconChainETHBalanceWei function withdrawNonBeaconChainETHBalanceWei(address recipient, uint256 amountToWithdraw) external; /// @notice called by owner of a pod to remove any ERC20s deposited in the pod function recoverTokens(IERC20[] memory tokenList, uint256[] memory amountsToWithdraw, address recipient) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title Interface for the BeaconStateOracle contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IBeaconChainOracle { /// @notice The block number to state root mapping. function timestampToBlockRoot(uint256 timestamp) external view returns (bytes32); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; import "../interfaces/IPauserRegistry.sol"; /** * @title Adds pausability to a contract, with pausing & unpausing controlled by the `pauser` and `unpauser` of a PauserRegistry contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service * @notice Contracts that inherit from this contract may define their own `pause` and `unpause` (and/or related) functions. * These functions should be permissioned as "onlyPauser" which defers to a `PauserRegistry` for determining access control. * @dev Pausability is implemented using a uint256, which allows up to 256 different single bit-flags; each bit can potentially pause different functionality. * Inspiration for this was taken from the NearBridge design here https://etherscan.io/address/0x3FEFc5A4B1c02f21cBc8D3613643ba0635b9a873#code. * For the `pause` and `unpause` functions we've implemented, if you pause, you can only flip (any number of) switches to on/1 (aka "paused"), and if you unpause, * you can only flip (any number of) switches to off/0 (aka "paused"). * If you want a pauseXYZ function that just flips a single bit / "pausing flag", it will: * 1) 'bit-wise and' (aka `&`) a flag with the current paused state (as a uint256) * 2) update the paused state to this new value * @dev We note as well that we have chosen to identify flags by their *bit index* as opposed to their numerical value, so, e.g. defining `DEPOSITS_PAUSED = 3` * indicates specifically that if the *third bit* of `_paused` is flipped -- i.e. it is a '1' -- then deposits should be paused */ interface IPausable { /// @notice Emitted when the `pauserRegistry` is set to `newPauserRegistry`. event PauserRegistrySet(IPauserRegistry pauserRegistry, IPauserRegistry newPauserRegistry); /// @notice Emitted when the pause is triggered by `account`, and changed to `newPausedStatus`. event Paused(address indexed account, uint256 newPausedStatus); /// @notice Emitted when the pause is lifted by `account`, and changed to `newPausedStatus`. event Unpaused(address indexed account, uint256 newPausedStatus); /// @notice Address of the `PauserRegistry` contract that this contract defers to for determining access control (for pausing). function pauserRegistry() external view returns (IPauserRegistry); /** * @notice This function is used to pause an EigenLayer contract's functionality. * It is permissioned to the `pauser` address, which is expected to be a low threshold multisig. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only pause functionality, and thus cannot 'unflip' any bit in `_paused` from 1 to 0. */ function pause(uint256 newPausedStatus) external; /** * @notice Alias for `pause(type(uint256).max)`. */ function pauseAll() external; /** * @notice This function is used to unpause an EigenLayer contract's functionality. * It is permissioned to the `unpauser` address, which is expected to be a high threshold multisig or governance contract. * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once. * @dev This function can only unpause functionality, and thus cannot 'flip' any bit in `_paused` from 0 to 1. */ function unpause(uint256 newPausedStatus) external; /// @notice Returns the current paused status as a uint256. function paused() external view returns (uint256); /// @notice Returns 'true' if the `indexed`th bit of `_paused` is 1, and 'false' otherwise function paused(uint8 index) external view returns (bool); /// @notice Allows the unpauser to set a new pauser registry function setPauserRegistry(IPauserRegistry newPauserRegistry) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; import "./Merkle.sol"; import "../libraries/Endian.sol"; //Utility library for parsing and PHASE0 beacon chain block headers //SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization //BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader //BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate library BeaconChainProofs { // constants are the number of fields and the heights of the different merkle trees used in merkleizing beacon chain containers uint256 internal constant BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT = 3; uint256 internal constant BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT = 4; uint256 internal constant BEACON_STATE_FIELD_TREE_HEIGHT = 5; uint256 internal constant VALIDATOR_FIELD_TREE_HEIGHT = 3; //Note: changed in the deneb hard fork from 4->5 uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_DENEB = 5; uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_CAPELLA = 4; // SLOTS_PER_HISTORICAL_ROOT = 2**13, so tree height is 13 uint256 internal constant BLOCK_ROOTS_TREE_HEIGHT = 13; //HISTORICAL_ROOTS_LIMIT = 2**24, so tree height is 24 uint256 internal constant HISTORICAL_SUMMARIES_TREE_HEIGHT = 24; //Index of block_summary_root in historical_summary container uint256 internal constant BLOCK_SUMMARY_ROOT_INDEX = 0; // tree height for hash tree of an individual withdrawal container uint256 internal constant WITHDRAWAL_FIELD_TREE_HEIGHT = 2; uint256 internal constant VALIDATOR_TREE_HEIGHT = 40; // MAX_WITHDRAWALS_PER_PAYLOAD = 2**4, making tree height = 4 uint256 internal constant WITHDRAWALS_TREE_HEIGHT = 4; //in beacon block body https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconblockbody uint256 internal constant EXECUTION_PAYLOAD_INDEX = 9; // in beacon block header https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader uint256 internal constant SLOT_INDEX = 0; uint256 internal constant STATE_ROOT_INDEX = 3; uint256 internal constant BODY_ROOT_INDEX = 4; // in beacon state https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconstate uint256 internal constant VALIDATOR_TREE_ROOT_INDEX = 11; uint256 internal constant HISTORICAL_SUMMARIES_INDEX = 27; // in validator https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0; uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1; uint256 internal constant VALIDATOR_BALANCE_INDEX = 2; uint256 internal constant VALIDATOR_WITHDRAWABLE_EPOCH_INDEX = 7; // in execution payload header uint256 internal constant TIMESTAMP_INDEX = 9; //in execution payload uint256 internal constant WITHDRAWALS_INDEX = 14; // in withdrawal uint256 internal constant WITHDRAWAL_VALIDATOR_INDEX_INDEX = 1; uint256 internal constant WITHDRAWAL_VALIDATOR_AMOUNT_INDEX = 3; //Misc Constants /// @notice The number of slots each epoch in the beacon chain uint64 internal constant SLOTS_PER_EPOCH = 32; /// @notice The number of seconds in a slot in the beacon chain uint64 internal constant SECONDS_PER_SLOT = 12; /// @notice Number of seconds per epoch: 384 == 32 slots/epoch * 12 seconds/slot uint64 internal constant SECONDS_PER_EPOCH = SLOTS_PER_EPOCH * SECONDS_PER_SLOT; bytes8 internal constant UINT64_MASK = 0xffffffffffffffff; /// @notice This struct contains the merkle proofs and leaves needed to verify a partial/full withdrawal struct WithdrawalProof { bytes withdrawalProof; bytes slotProof; bytes executionPayloadProof; bytes timestampProof; bytes historicalSummaryBlockRootProof; uint64 blockRootIndex; uint64 historicalSummaryIndex; uint64 withdrawalIndex; bytes32 blockRoot; bytes32 slotRoot; bytes32 timestampRoot; bytes32 executionPayloadRoot; } /// @notice This struct contains the root and proof for verifying the state root against the oracle block root struct StateRootProof { bytes32 beaconStateRoot; bytes proof; } /** * @notice This function verifies merkle proofs of the fields of a certain validator against a beacon chain state root * @param validatorIndex the index of the proven validator * @param beaconStateRoot is the beacon chain state root to be proven against. * @param validatorFieldsProof is the data used in proving the validator's fields * @param validatorFields the claimed fields of the validator */ function verifyValidatorFields( bytes32 beaconStateRoot, bytes32[] calldata validatorFields, bytes calldata validatorFieldsProof, uint40 validatorIndex ) internal view { require( validatorFields.length == 2 ** VALIDATOR_FIELD_TREE_HEIGHT, "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length" ); /** * Note: the length of the validator merkle proof is BeaconChainProofs.VALIDATOR_TREE_HEIGHT + 1. * There is an additional layer added by hashing the root with the length of the validator list */ require( validatorFieldsProof.length == 32 * ((VALIDATOR_TREE_HEIGHT + 1) + BEACON_STATE_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length" ); uint256 index = (VALIDATOR_TREE_ROOT_INDEX << (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex); // merkleize the validatorFields to get the leaf to prove bytes32 validatorRoot = Merkle.merkleizeSha256(validatorFields); // verify the proof of the validatorRoot against the beaconStateRoot require( Merkle.verifyInclusionSha256({ proof: validatorFieldsProof, root: beaconStateRoot, leaf: validatorRoot, index: index }), "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof" ); } /** * @notice This function verifies the latestBlockHeader against the state root. the latestBlockHeader is * a tracked in the beacon state. * @param beaconStateRoot is the beacon chain state root to be proven against. * @param stateRootProof is the provided merkle proof * @param latestBlockRoot is hashtree root of the latest block header in the beacon state */ function verifyStateRootAgainstLatestBlockRoot( bytes32 latestBlockRoot, bytes32 beaconStateRoot, bytes calldata stateRootProof ) internal view { require( stateRootProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Proof has incorrect length" ); //Next we verify the slot against the blockRoot require( Merkle.verifyInclusionSha256({ proof: stateRootProof, root: latestBlockRoot, leaf: beaconStateRoot, index: STATE_ROOT_INDEX }), "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Invalid latest block header root merkle proof" ); } /** * @notice This function verifies the slot and the withdrawal fields for a given withdrawal * @param withdrawalProof is the provided set of merkle proofs * @param withdrawalFields is the serialized withdrawal container to be proven */ function verifyWithdrawal( bytes32 beaconStateRoot, bytes32[] calldata withdrawalFields, WithdrawalProof calldata withdrawalProof, uint64 denebForkTimestamp ) internal view { require( withdrawalFields.length == 2 ** WITHDRAWAL_FIELD_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: withdrawalFields has incorrect length" ); require( withdrawalProof.blockRootIndex < 2 ** BLOCK_ROOTS_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: blockRootIndex is too large" ); require( withdrawalProof.withdrawalIndex < 2 ** WITHDRAWALS_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: withdrawalIndex is too large" ); require( withdrawalProof.historicalSummaryIndex < 2 ** HISTORICAL_SUMMARIES_TREE_HEIGHT, "BeaconChainProofs.verifyWithdrawal: historicalSummaryIndex is too large" ); //Note: post deneb hard fork, the number of exection payload header fields increased from 15->17, adding an extra level to the tree height uint256 executionPayloadHeaderFieldTreeHeight = (getWithdrawalTimestamp(withdrawalProof) < denebForkTimestamp) ? EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_CAPELLA : EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT_DENEB; require( withdrawalProof.withdrawalProof.length == 32 * (executionPayloadHeaderFieldTreeHeight + WITHDRAWALS_TREE_HEIGHT + 1), "BeaconChainProofs.verifyWithdrawal: withdrawalProof has incorrect length" ); require( withdrawalProof.executionPayloadProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT + BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyWithdrawal: executionPayloadProof has incorrect length" ); require( withdrawalProof.slotProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT), "BeaconChainProofs.verifyWithdrawal: slotProof has incorrect length" ); require( withdrawalProof.timestampProof.length == 32 * (executionPayloadHeaderFieldTreeHeight), "BeaconChainProofs.verifyWithdrawal: timestampProof has incorrect length" ); require( withdrawalProof.historicalSummaryBlockRootProof.length == 32 * (BEACON_STATE_FIELD_TREE_HEIGHT + (HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT)), "BeaconChainProofs.verifyWithdrawal: historicalSummaryBlockRootProof has incorrect length" ); /** * Note: Here, the "1" in "1 + (BLOCK_ROOTS_TREE_HEIGHT)" signifies that extra step of choosing the "block_root_summary" within the individual * "historical_summary". Everywhere else it signifies merkelize_with_mixin, where the length of an array is hashed with the root of the array, * but not here. */ uint256 historicalBlockHeaderIndex = (HISTORICAL_SUMMARIES_INDEX << ((HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT))) | (uint256(withdrawalProof.historicalSummaryIndex) << (1 + (BLOCK_ROOTS_TREE_HEIGHT))) | (BLOCK_SUMMARY_ROOT_INDEX << (BLOCK_ROOTS_TREE_HEIGHT)) | uint256(withdrawalProof.blockRootIndex); require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.historicalSummaryBlockRootProof, root: beaconStateRoot, leaf: withdrawalProof.blockRoot, index: historicalBlockHeaderIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid historicalsummary merkle proof" ); //Next we verify the slot against the blockRoot require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.slotProof, root: withdrawalProof.blockRoot, leaf: withdrawalProof.slotRoot, index: SLOT_INDEX }), "BeaconChainProofs.verifyWithdrawal: Invalid slot merkle proof" ); { // Next we verify the executionPayloadRoot against the blockRoot uint256 executionPayloadIndex = (BODY_ROOT_INDEX << (BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT)) | EXECUTION_PAYLOAD_INDEX; require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.executionPayloadProof, root: withdrawalProof.blockRoot, leaf: withdrawalProof.executionPayloadRoot, index: executionPayloadIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid executionPayload merkle proof" ); } // Next we verify the timestampRoot against the executionPayload root require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.timestampProof, root: withdrawalProof.executionPayloadRoot, leaf: withdrawalProof.timestampRoot, index: TIMESTAMP_INDEX }), "BeaconChainProofs.verifyWithdrawal: Invalid timestamp merkle proof" ); { /** * Next we verify the withdrawal fields against the executionPayloadRoot: * First we compute the withdrawal_index, then we merkleize the * withdrawalFields container to calculate the withdrawalRoot. * * Note: Merkleization of the withdrawals root tree uses MerkleizeWithMixin, i.e., the length of the array is hashed with the root of * the array. Thus we shift the WITHDRAWALS_INDEX over by WITHDRAWALS_TREE_HEIGHT + 1 and not just WITHDRAWALS_TREE_HEIGHT. */ uint256 withdrawalIndex = (WITHDRAWALS_INDEX << (WITHDRAWALS_TREE_HEIGHT + 1)) | uint256(withdrawalProof.withdrawalIndex); bytes32 withdrawalRoot = Merkle.merkleizeSha256(withdrawalFields); require( Merkle.verifyInclusionSha256({ proof: withdrawalProof.withdrawalProof, root: withdrawalProof.executionPayloadRoot, leaf: withdrawalRoot, index: withdrawalIndex }), "BeaconChainProofs.verifyWithdrawal: Invalid withdrawal merkle proof" ); } } /** * @notice This function replicates the ssz hashing of a validator's pubkey, outlined below: * hh := ssz.NewHasher() * hh.PutBytes(validatorPubkey[:]) * validatorPubkeyHash := hh.Hash() * hh.Reset() */ function hashValidatorBLSPubkey(bytes memory validatorPubkey) internal pure returns (bytes32 pubkeyHash) { require(validatorPubkey.length == 48, "Input should be 48 bytes in length"); return sha256(abi.encodePacked(validatorPubkey, bytes16(0))); } /** * @dev Retrieve the withdrawal timestamp */ function getWithdrawalTimestamp(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(withdrawalProof.timestampRoot); } /** * @dev Converts the withdrawal's slot to an epoch */ function getWithdrawalEpoch(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(withdrawalProof.slotRoot) / SLOTS_PER_EPOCH; } /** * Indices for validator fields (refer to consensus specs): * 0: pubkey * 1: withdrawal credentials * 2: effective balance * 3: slashed? * 4: activation elligibility epoch * 5: activation epoch * 6: exit epoch * 7: withdrawable epoch */ /** * @dev Retrieves a validator's pubkey hash */ function getPubkeyHash(bytes32[] memory validatorFields) internal pure returns (bytes32) { return validatorFields[VALIDATOR_PUBKEY_INDEX]; } function getWithdrawalCredentials(bytes32[] memory validatorFields) internal pure returns (bytes32) { return validatorFields[VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX]; } /** * @dev Retrieves a validator's effective balance (in gwei) */ function getEffectiveBalanceGwei(bytes32[] memory validatorFields) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_BALANCE_INDEX]); } /** * @dev Retrieves a validator's withdrawable epoch */ function getWithdrawableEpoch(bytes32[] memory validatorFields) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_WITHDRAWABLE_EPOCH_INDEX]); } /** * Indices for withdrawal fields (refer to consensus specs): * 0: withdrawal index * 1: validator index * 2: execution address * 3: withdrawal amount */ /** * @dev Retrieves a withdrawal's validator index */ function getValidatorIndex(bytes32[] memory withdrawalFields) internal pure returns (uint40) { return uint40(Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_INDEX_INDEX])); } /** * @dev Retrieves a withdrawal's withdrawal amount (in gwei) */ function getWithdrawalAmountGwei(bytes32[] memory withdrawalFields) internal pure returns (uint64) { return Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_AMOUNT_INDEX]); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity >=0.5.0; /** * @title Interface for the `PauserRegistry` contract. * @author Layr Labs, Inc. * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service */ interface IPauserRegistry { event PauserStatusChanged(address pauser, bool canPause); event UnpauserChanged(address previousUnpauser, address newUnpauser); /// @notice Mapping of addresses to whether they hold the pauser role. function isPauser(address pauser) external view returns (bool); /// @notice Unique address that holds the unpauser role. Capable of changing *both* the pauser and unpauser addresses. function unpauser() external view returns (address); }
// SPDX-License-Identifier: MIT // Adapted from OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library Merkle { /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * Note this is for a Merkle tree using the keccak/sha3 hash function */ function verifyInclusionKeccak( bytes memory proof, bytes32 root, bytes32 leaf, uint256 index ) internal pure returns (bool) { return processInclusionProofKeccak(proof, leaf, index) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * _Available since v4.4._ * * Note this is for a Merkle tree using the keccak/sha3 hash function */ function processInclusionProofKeccak( bytes memory proof, bytes32 leaf, uint256 index ) internal pure returns (bytes32) { require( proof.length != 0 && proof.length % 32 == 0, "Merkle.processInclusionProofKeccak: proof length should be a non-zero multiple of 32" ); bytes32 computedHash = leaf; for (uint256 i = 32; i <= proof.length; i += 32) { if (index % 2 == 0) { // if ith bit of index is 0, then computedHash is a left sibling assembly { mstore(0x00, computedHash) mstore(0x20, mload(add(proof, i))) computedHash := keccak256(0x00, 0x40) index := div(index, 2) } } else { // if ith bit of index is 1, then computedHash is a right sibling assembly { mstore(0x00, mload(add(proof, i))) mstore(0x20, computedHash) computedHash := keccak256(0x00, 0x40) index := div(index, 2) } } } return computedHash; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * Note this is for a Merkle tree using the sha256 hash function */ function verifyInclusionSha256( bytes memory proof, bytes32 root, bytes32 leaf, uint256 index ) internal view returns (bool) { return processInclusionProofSha256(proof, leaf, index) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. The tree is built assuming `leaf` is * the 0 indexed `index`'th leaf from the bottom left of the tree. * * _Available since v4.4._ * * Note this is for a Merkle tree using the sha256 hash function */ function processInclusionProofSha256( bytes memory proof, bytes32 leaf, uint256 index ) internal view returns (bytes32) { require( proof.length != 0 && proof.length % 32 == 0, "Merkle.processInclusionProofSha256: proof length should be a non-zero multiple of 32" ); bytes32[1] memory computedHash = [leaf]; for (uint256 i = 32; i <= proof.length; i += 32) { if (index % 2 == 0) { // if ith bit of index is 0, then computedHash is a left sibling assembly { mstore(0x00, mload(computedHash)) mstore(0x20, mload(add(proof, i))) if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) { revert(0, 0) } index := div(index, 2) } } else { // if ith bit of index is 1, then computedHash is a right sibling assembly { mstore(0x00, mload(add(proof, i))) mstore(0x20, mload(computedHash)) if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) { revert(0, 0) } index := div(index, 2) } } } return computedHash[0]; } /** @notice this function returns the merkle root of a tree created from a set of leaves using sha256 as its hash function @param leaves the leaves of the merkle tree @return The computed Merkle root of the tree. @dev A pre-condition to this function is that leaves.length is a power of two. If not, the function will merkleize the inputs incorrectly. */ function merkleizeSha256(bytes32[] memory leaves) internal pure returns (bytes32) { //there are half as many nodes in the layer above the leaves uint256 numNodesInLayer = leaves.length / 2; //create a layer to store the internal nodes bytes32[] memory layer = new bytes32[](numNodesInLayer); //fill the layer with the pairwise hashes of the leaves for (uint256 i = 0; i < numNodesInLayer; i++) { layer[i] = sha256(abi.encodePacked(leaves[2 * i], leaves[2 * i + 1])); } //the next layer above has half as many nodes numNodesInLayer /= 2; //while we haven't computed the root while (numNodesInLayer != 0) { //overwrite the first numNodesInLayer nodes in layer with the pairwise hashes of their children for (uint256 i = 0; i < numNodesInLayer; i++) { layer[i] = sha256(abi.encodePacked(layer[2 * i], layer[2 * i + 1])); } //the next layer above has half as many nodes numNodesInLayer /= 2; } //the first node in the layer is the root return layer[0]; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.0; library Endian { /** * @notice Converts a little endian-formatted uint64 to a big endian-formatted uint64 * @param lenum little endian-formatted uint64 input, provided as 'bytes32' type * @return n The big endian-formatted uint64 * @dev Note that the input is formatted as a 'bytes32' type (i.e. 256 bits), but it is immediately truncated to a uint64 (i.e. 64 bits) * through a right-shift/shr operation. */ function fromLittleEndianUint64(bytes32 lenum) internal pure returns (uint64 n) { // the number needs to be stored in little-endian encoding (ie in bytes 0-8) n = uint64(uint256(lenum >> 192)); return (n >> 56) | ((0x00FF000000000000 & n) >> 40) | ((0x0000FF0000000000 & n) >> 24) | ((0x000000FF00000000 & n) >> 8) | ((0x00000000FF000000 & n) << 8) | ((0x0000000000FF0000 & n) << 24) | ((0x000000000000FF00 & n) << 40) | ((0x00000000000000FF & n) << 56); } }
{ "remappings": [ "@openzeppelin-upgrades/=lib/openzeppelin-contracts-upgradeable/", "@openzeppelin/=lib/openzeppelin-contracts/", "@openzeppelin-v4.9.0/=lib/openzeppelin-contracts-v4.9.0/", "@openzeppelin-upgrades-v4.9.0/=lib/openzeppelin-contracts-upgradeable-v4.9.0/", "ds-test/=lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable-v4.9.0/lib/erc4626-tests/", "openzeppelin-contracts-upgradeable-v4.9.0/=lib/openzeppelin-contracts-upgradeable-v4.9.0/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts-v4.9.0/=lib/openzeppelin-contracts-v4.9.0/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin/=lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
[{"inputs":[{"internalType":"contract IStrategyManager","name":"_strategyManager","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"newPausedStatus","type":"uint256"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IPauserRegistry","name":"pauserRegistry","type":"address"},{"indexed":false,"internalType":"contract IPauserRegistry","name":"newPauserRegistry","type":"address"}],"name":"PauserRegistrySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"newPausedStatus","type":"uint256"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"EIGEN","outputs":[{"internalType":"contract IEigen","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"newShares","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"explanation","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"_underlyingToken","type":"address"},{"internalType":"contract IPauserRegistry","name":"_pauserRegistry","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IEigen","name":"_EIGEN","type":"address"},{"internalType":"contract IERC20","name":"_bEIGEN","type":"address"},{"internalType":"contract IPauserRegistry","name":"_pauserRegistry","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPausedStatus","type":"uint256"}],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pauseAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"index","type":"uint8"}],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pauserRegistry","outputs":[{"internalType":"contract IPauserRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IPauserRegistry","name":"newPauserRegistry","type":"address"}],"name":"setPauserRegistry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"shares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountShares","type":"uint256"}],"name":"sharesToUnderlying","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountShares","type":"uint256"}],"name":"sharesToUnderlyingView","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"strategyManager","outputs":[{"internalType":"contract IStrategyManager","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountUnderlying","type":"uint256"}],"name":"underlyingToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountUnderlying","type":"uint256"}],"name":"underlyingToSharesView","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"underlyingToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPausedStatus","type":"uint256"}],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userUnderlying","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userUnderlyingView","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"amountShares","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a06040523480156200001157600080fd5b5060405162001bd238038062001bd2833981016040819052620000349162000116565b6001600160a01b038116608052806200004c62000054565b505062000148565b600054610100900460ff1615620000c15760405162461bcd60e51b815260206004820152602760248201527f496e697469616c697a61626c653a20636f6e747261637420697320696e697469604482015266616c697a696e6760c81b606482015260840160405180910390fd5b60005460ff908116101562000114576000805460ff191660ff9081179091556040519081527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b565b6000602082840312156200012957600080fd5b81516001600160a01b03811681146200014157600080fd5b9392505050565b608051611a5962000179600039600081816101af015281816105ac01528181610a340152610aff0152611a596000f3fe608060405234801561001057600080fd5b506004361061014d5760003560e01c80637a8b2637116100c3578063ce7c2ac21161007c578063ce7c2ac2146102da578063d9caed12146102ed578063e3dae51c14610300578063f3e7387514610313578063fabc1cbc14610326578063fdc371ce1461033957600080fd5b80637a8b263714610260578063886f1195146102735780638c8710191461028c5780638f6a62401461029f578063ab5921e1146102b2578063c0c53b8b146102c757600080fd5b806347e7ef241161011557806347e7ef24146101e8578063485cc955146101fb578063553ca5f81461020e578063595c6a67146102215780635ac86ab7146102295780635c975abb1461025857600080fd5b806310d67a2f14610152578063136439dd146101675780632495a5991461017a57806339b70e38146101aa5780633a98ef39146101d1575b600080fd5b610165610160366004611653565b61034c565b005b610165610175366004611670565b610408565b60325461018d906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61018d7f000000000000000000000000000000000000000000000000000000000000000081565b6101da60335481565b6040519081526020016101a1565b6101da6101f6366004611689565b61054c565b6101656102093660046116b5565b6106f0565b6101da61021c366004611653565b6107be565b6101656107d2565b6102486102373660046116ee565b6001805460ff9092161b9081161490565b60405190151581526020016101a1565b6001546101da565b6101da61026e366004611670565b61089e565b60005461018d906201000090046001600160a01b031681565b6101da61029a366004611670565b6108e9565b6101da6102ad366004611653565b6108f4565b6102ba610902565b6040516101a1919061173d565b6101656102d5366004611770565b610922565b6101da6102e8366004611653565b610a0c565b6101656102fb3660046117bb565b610aa1565b6101da61030e366004611670565b610c6a565b6101da610321366004611670565b610ca3565b610165610334366004611670565b610cae565b60645461018d906001600160a01b031681565b600060029054906101000a90046001600160a01b03166001600160a01b031663eab66d7a6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561039f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103c391906117fc565b6001600160a01b0316336001600160a01b0316146103fc5760405162461bcd60e51b81526004016103f390611819565b60405180910390fd5b61040581610e0a565b50565b60005460405163237dfb4760e11b8152336004820152620100009091046001600160a01b0316906346fbf68e90602401602060405180830381865afa158015610455573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104799190611863565b6104955760405162461bcd60e51b81526004016103f390611885565b6001548181161461050e5760405162461bcd60e51b815260206004820152603860248201527f5061757361626c652e70617573653a20696e76616c696420617474656d70742060448201527f746f20756e70617573652066756e6374696f6e616c697479000000000000000060648201526084016103f3565b600181905560405181815233907fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d906020015b60405180910390a250565b600180546000918291811614156105a15760405162461bcd60e51b815260206004820152601960248201527814185d5cd8589b194e881a5b99195e081a5cc81c185d5cd959603a1b60448201526064016103f3565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146106195760405162461bcd60e51b815260206004820181905260248201527f5374726174656779426173652e6f6e6c7953747261746567794d616e6167657260448201526064016103f3565b6106238484610f0f565b60335460006106346103e8836118e3565b905060006103e8610643611023565b61064d91906118e3565b9050600061065b87836118fb565b9050806106688489611912565b6106729190611931565b9550856106d85760405162461bcd60e51b815260206004820152602e60248201527f5374726174656779426173652e6465706f7369743a206e65775368617265732060448201526d63616e6e6f74206265207a65726f60901b60648201526084016103f3565b6106e286856118e3565b603355505050505092915050565b600054610100900460ff16158080156107105750600054600160ff909116105b8061072a5750303b15801561072a575060005460ff166001145b6107465760405162461bcd60e51b81526004016103f390611953565b6000805460ff191660011790558015610769576000805461ff0019166101001790555b6107738383611095565b80156107b9576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b60006107cc61026e83610a0c565b92915050565b60005460405163237dfb4760e11b8152336004820152620100009091046001600160a01b0316906346fbf68e90602401602060405180830381865afa15801561081f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108439190611863565b61085f5760405162461bcd60e51b81526004016103f390611885565b600019600181905560405190815233907fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d9060200160405180910390a2565b6000806103e86033546108b191906118e3565b905060006103e86108c0611023565b6108ca91906118e3565b9050816108d78583611912565b6108e19190611931565b949350505050565b60006107cc82610c6a565b60006107cc61032183610a0c565b60606040518060800160405280604d81526020016119d7604d9139905090565b600054610100900460ff16158080156109425750600054600160ff909116105b8061095c5750303b15801561095c575060005460ff166001145b6109785760405162461bcd60e51b81526004016103f390611953565b6000805460ff19166001179055801561099b576000805461ff0019166101001790555b606480546001600160a01b0319166001600160a01b0386161790556109c08383611095565b8015610a06576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050565b604051633d3f06c960e11b81526001600160a01b0382811660048301523060248301526000917f000000000000000000000000000000000000000000000000000000000000000090911690637a7e0d9290604401602060405180830381865afa158015610a7d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107cc91906119a1565b6001805460029081161415610af45760405162461bcd60e51b815260206004820152601960248201527814185d5cd8589b194e881a5b99195e081a5cc81c185d5cd959603a1b60448201526064016103f3565b336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614610b6c5760405162461bcd60e51b815260206004820181905260248201527f5374726174656779426173652e6f6e6c7953747261746567794d616e6167657260448201526064016103f3565b610b77848484611126565b60335480831115610c065760405162461bcd60e51b815260206004820152604d60248201527f5374726174656779426173652e77697468647261773a20616d6f756e7453686160448201527f726573206d757374206265206c657373207468616e206f7220657175616c207460648201526c6f20746f74616c53686172657360981b608482015260a4016103f3565b6000610c146103e8836118e3565b905060006103e8610c23611023565b610c2d91906118e3565b9050600082610c3c8784611912565b610c469190611931565b9050610c5286856118fb565b603355610c608888836111c1565b5050505050505050565b6000806103e8603354610c7d91906118e3565b905060006103e8610c8c611023565b610c9691906118e3565b9050806108d78386611912565b60006107cc8261089e565b600060029054906101000a90046001600160a01b03166001600160a01b031663eab66d7a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d01573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d2591906117fc565b6001600160a01b0316336001600160a01b031614610d555760405162461bcd60e51b81526004016103f390611819565b600154198119600154191614610dd35760405162461bcd60e51b815260206004820152603860248201527f5061757361626c652e756e70617573653a20696e76616c696420617474656d7060448201527f7420746f2070617573652066756e6374696f6e616c697479000000000000000060648201526084016103f3565b600181905560405181815233907f3582d1828e26bf56bd801502bc021ac0bc8afb57c826e4986b45593c8fad389c90602001610541565b6001600160a01b038116610e985760405162461bcd60e51b815260206004820152604960248201527f5061757361626c652e5f73657450617573657252656769737472793a206e657760448201527f50617573657252656769737472792063616e6e6f7420626520746865207a65726064820152686f206164647265737360b81b608482015260a4016103f3565b600054604080516001600160a01b03620100009093048316815291831660208301527f6e9fcd539896fca60e8b0f01dd580233e48a6b0f7df013b89ba7f565869acdb6910160405180910390a1600080546001600160a01b03909216620100000262010000600160b01b0319909216919091179055565b6032546001600160a01b0383811691161480610f3857506064546001600160a01b038381169116145b610faa5760405162461bcd60e51b815260206004820152603760248201527f456967656e53747261746567792e6465706f7369743a2043616e206f6e6c792060448201527f6465706f7369742062454947454e206f7220454947454e00000000000000000060648201526084016103f3565b6064546001600160a01b038381169116141561101f57606454604051636f074d1f60e11b8152600481018390526001600160a01b039091169063de0e9a3e90602401600060405180830381600087803b15801561100657600080fd5b505af115801561101a573d6000803e3d6000fd5b505050505b5050565b6032546040516370a0823160e01b81523060048201526000916001600160a01b0316906370a0823190602401602060405180830381865afa15801561106c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061109091906119a1565b905090565b600054610100900460ff166111005760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016103f3565b603280546001600160a01b0319166001600160a01b03841617905561101f8160006112c2565b6032546001600160a01b038381169116148061114f57506064546001600160a01b038381169116145b6107b95760405162461bcd60e51b815260206004820152603960248201527f456967656e53747261746567792e77697468647261773a2043616e206f6e6c7960448201527f2077697468647261772062454947454e206f7220454947454e0000000000000060648201526084016103f3565b6064546001600160a01b03838116911614156112ae5760325460405163095ea7b360e01b81526001600160a01b038481166004830152602482018490529091169063095ea7b3906044016020604051808303816000875af115801561122a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061124e9190611863565b50606454604051630ea598cb60e41b8152600481018390526001600160a01b039091169063ea598cb090602401600060405180830381600087803b15801561129557600080fd5b505af11580156112a9573d6000803e3d6000fd5b505050505b6107b96001600160a01b03831684836113ae565b6000546201000090046001600160a01b03161580156112e957506001600160a01b03821615155b61136b5760405162461bcd60e51b815260206004820152604760248201527f5061757361626c652e5f696e697469616c697a655061757365723a205f696e6960448201527f7469616c697a6550617573657228292063616e206f6e6c792062652063616c6c6064820152666564206f6e636560c81b608482015260a4016103f3565b600181905560405181815233907fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d9060200160405180910390a261101f82610e0a565b604080516001600160a01b03848116602483015260448083018590528351808403909101815260649092018352602080830180516001600160e01b031663a9059cbb60e01b17905283518085019094528084527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564908401526107b99286929160009161143e9185169084906114bb565b8051909150156107b9578080602001905181019061145c9190611863565b6107b95760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016103f3565b60606114ca84846000856114d4565b90505b9392505050565b6060824710156115355760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b60648201526084016103f3565b6001600160a01b0385163b61158c5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103f3565b600080866001600160a01b031685876040516115a891906119ba565b60006040518083038185875af1925050503d80600081146115e5576040519150601f19603f3d011682016040523d82523d6000602084013e6115ea565b606091505b50915091506115fa828286611605565b979650505050505050565b606083156116145750816114cd565b8251156116245782518084602001fd5b8160405162461bcd60e51b81526004016103f3919061173d565b6001600160a01b038116811461040557600080fd5b60006020828403121561166557600080fd5b81356114cd8161163e565b60006020828403121561168257600080fd5b5035919050565b6000806040838503121561169c57600080fd5b82356116a78161163e565b946020939093013593505050565b600080604083850312156116c857600080fd5b82356116d38161163e565b915060208301356116e38161163e565b809150509250929050565b60006020828403121561170057600080fd5b813560ff811681146114cd57600080fd5b60005b8381101561172c578181015183820152602001611714565b83811115610a065750506000910152565b602081526000825180602084015261175c816040850160208701611711565b601f01601f19169190910160400192915050565b60008060006060848603121561178557600080fd5b83356117908161163e565b925060208401356117a08161163e565b915060408401356117b08161163e565b809150509250925092565b6000806000606084860312156117d057600080fd5b83356117db8161163e565b925060208401356117eb8161163e565b929592945050506040919091013590565b60006020828403121561180e57600080fd5b81516114cd8161163e565b6020808252602a908201527f6d73672e73656e646572206973206e6f74207065726d697373696f6e6564206160408201526939903ab73830bab9b2b960b11b606082015260800190565b60006020828403121561187557600080fd5b815180151581146114cd57600080fd5b60208082526028908201527f6d73672e73656e646572206973206e6f74207065726d697373696f6e6564206160408201526739903830bab9b2b960c11b606082015260800190565b634e487b7160e01b600052601160045260246000fd5b600082198211156118f6576118f66118cd565b500190565b60008282101561190d5761190d6118cd565b500390565b600081600019048311821515161561192c5761192c6118cd565b500290565b60008261194e57634e487b7160e01b600052601260045260246000fd5b500490565b6020808252602e908201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160408201526d191e481a5b9a5d1a585b1a5e995960921b606082015260800190565b6000602082840312156119b357600080fd5b5051919050565b600082516119cc818460208701611711565b919091019291505056fe4261736520537472617465677920696d706c656d656e746174696f6e20746f20696e68657269742066726f6d20666f72206d6f726520636f6d706c657820696d706c656d656e746174696f6e73a2646970667358221220ceaf39104b709be8f2f67d60b8de64817b73d0f32176967bb60943024b27678064736f6c634300080c0033000000000000000000000000dfb5f6ce42aaa7830e94ecfccad411bef4d4d5b6
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061014d5760003560e01c80637a8b2637116100c3578063ce7c2ac21161007c578063ce7c2ac2146102da578063d9caed12146102ed578063e3dae51c14610300578063f3e7387514610313578063fabc1cbc14610326578063fdc371ce1461033957600080fd5b80637a8b263714610260578063886f1195146102735780638c8710191461028c5780638f6a62401461029f578063ab5921e1146102b2578063c0c53b8b146102c757600080fd5b806347e7ef241161011557806347e7ef24146101e8578063485cc955146101fb578063553ca5f81461020e578063595c6a67146102215780635ac86ab7146102295780635c975abb1461025857600080fd5b806310d67a2f14610152578063136439dd146101675780632495a5991461017a57806339b70e38146101aa5780633a98ef39146101d1575b600080fd5b610165610160366004611653565b61034c565b005b610165610175366004611670565b610408565b60325461018d906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61018d7f000000000000000000000000dfb5f6ce42aaa7830e94ecfccad411bef4d4d5b681565b6101da60335481565b6040519081526020016101a1565b6101da6101f6366004611689565b61054c565b6101656102093660046116b5565b6106f0565b6101da61021c366004611653565b6107be565b6101656107d2565b6102486102373660046116ee565b6001805460ff9092161b9081161490565b60405190151581526020016101a1565b6001546101da565b6101da61026e366004611670565b61089e565b60005461018d906201000090046001600160a01b031681565b6101da61029a366004611670565b6108e9565b6101da6102ad366004611653565b6108f4565b6102ba610902565b6040516101a1919061173d565b6101656102d5366004611770565b610922565b6101da6102e8366004611653565b610a0c565b6101656102fb3660046117bb565b610aa1565b6101da61030e366004611670565b610c6a565b6101da610321366004611670565b610ca3565b610165610334366004611670565b610cae565b60645461018d906001600160a01b031681565b600060029054906101000a90046001600160a01b03166001600160a01b031663eab66d7a6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561039f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103c391906117fc565b6001600160a01b0316336001600160a01b0316146103fc5760405162461bcd60e51b81526004016103f390611819565b60405180910390fd5b61040581610e0a565b50565b60005460405163237dfb4760e11b8152336004820152620100009091046001600160a01b0316906346fbf68e90602401602060405180830381865afa158015610455573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104799190611863565b6104955760405162461bcd60e51b81526004016103f390611885565b6001548181161461050e5760405162461bcd60e51b815260206004820152603860248201527f5061757361626c652e70617573653a20696e76616c696420617474656d70742060448201527f746f20756e70617573652066756e6374696f6e616c697479000000000000000060648201526084016103f3565b600181905560405181815233907fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d906020015b60405180910390a250565b600180546000918291811614156105a15760405162461bcd60e51b815260206004820152601960248201527814185d5cd8589b194e881a5b99195e081a5cc81c185d5cd959603a1b60448201526064016103f3565b336001600160a01b037f000000000000000000000000dfb5f6ce42aaa7830e94ecfccad411bef4d4d5b616146106195760405162461bcd60e51b815260206004820181905260248201527f5374726174656779426173652e6f6e6c7953747261746567794d616e6167657260448201526064016103f3565b6106238484610f0f565b60335460006106346103e8836118e3565b905060006103e8610643611023565b61064d91906118e3565b9050600061065b87836118fb565b9050806106688489611912565b6106729190611931565b9550856106d85760405162461bcd60e51b815260206004820152602e60248201527f5374726174656779426173652e6465706f7369743a206e65775368617265732060448201526d63616e6e6f74206265207a65726f60901b60648201526084016103f3565b6106e286856118e3565b603355505050505092915050565b600054610100900460ff16158080156107105750600054600160ff909116105b8061072a5750303b15801561072a575060005460ff166001145b6107465760405162461bcd60e51b81526004016103f390611953565b6000805460ff191660011790558015610769576000805461ff0019166101001790555b6107738383611095565b80156107b9576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b505050565b60006107cc61026e83610a0c565b92915050565b60005460405163237dfb4760e11b8152336004820152620100009091046001600160a01b0316906346fbf68e90602401602060405180830381865afa15801561081f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108439190611863565b61085f5760405162461bcd60e51b81526004016103f390611885565b600019600181905560405190815233907fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d9060200160405180910390a2565b6000806103e86033546108b191906118e3565b905060006103e86108c0611023565b6108ca91906118e3565b9050816108d78583611912565b6108e19190611931565b949350505050565b60006107cc82610c6a565b60006107cc61032183610a0c565b60606040518060800160405280604d81526020016119d7604d9139905090565b600054610100900460ff16158080156109425750600054600160ff909116105b8061095c5750303b15801561095c575060005460ff166001145b6109785760405162461bcd60e51b81526004016103f390611953565b6000805460ff19166001179055801561099b576000805461ff0019166101001790555b606480546001600160a01b0319166001600160a01b0386161790556109c08383611095565b8015610a06576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50505050565b604051633d3f06c960e11b81526001600160a01b0382811660048301523060248301526000917f000000000000000000000000dfb5f6ce42aaa7830e94ecfccad411bef4d4d5b690911690637a7e0d9290604401602060405180830381865afa158015610a7d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107cc91906119a1565b6001805460029081161415610af45760405162461bcd60e51b815260206004820152601960248201527814185d5cd8589b194e881a5b99195e081a5cc81c185d5cd959603a1b60448201526064016103f3565b336001600160a01b037f000000000000000000000000dfb5f6ce42aaa7830e94ecfccad411bef4d4d5b61614610b6c5760405162461bcd60e51b815260206004820181905260248201527f5374726174656779426173652e6f6e6c7953747261746567794d616e6167657260448201526064016103f3565b610b77848484611126565b60335480831115610c065760405162461bcd60e51b815260206004820152604d60248201527f5374726174656779426173652e77697468647261773a20616d6f756e7453686160448201527f726573206d757374206265206c657373207468616e206f7220657175616c207460648201526c6f20746f74616c53686172657360981b608482015260a4016103f3565b6000610c146103e8836118e3565b905060006103e8610c23611023565b610c2d91906118e3565b9050600082610c3c8784611912565b610c469190611931565b9050610c5286856118fb565b603355610c608888836111c1565b5050505050505050565b6000806103e8603354610c7d91906118e3565b905060006103e8610c8c611023565b610c9691906118e3565b9050806108d78386611912565b60006107cc8261089e565b600060029054906101000a90046001600160a01b03166001600160a01b031663eab66d7a6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d01573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610d2591906117fc565b6001600160a01b0316336001600160a01b031614610d555760405162461bcd60e51b81526004016103f390611819565b600154198119600154191614610dd35760405162461bcd60e51b815260206004820152603860248201527f5061757361626c652e756e70617573653a20696e76616c696420617474656d7060448201527f7420746f2070617573652066756e6374696f6e616c697479000000000000000060648201526084016103f3565b600181905560405181815233907f3582d1828e26bf56bd801502bc021ac0bc8afb57c826e4986b45593c8fad389c90602001610541565b6001600160a01b038116610e985760405162461bcd60e51b815260206004820152604960248201527f5061757361626c652e5f73657450617573657252656769737472793a206e657760448201527f50617573657252656769737472792063616e6e6f7420626520746865207a65726064820152686f206164647265737360b81b608482015260a4016103f3565b600054604080516001600160a01b03620100009093048316815291831660208301527f6e9fcd539896fca60e8b0f01dd580233e48a6b0f7df013b89ba7f565869acdb6910160405180910390a1600080546001600160a01b03909216620100000262010000600160b01b0319909216919091179055565b6032546001600160a01b0383811691161480610f3857506064546001600160a01b038381169116145b610faa5760405162461bcd60e51b815260206004820152603760248201527f456967656e53747261746567792e6465706f7369743a2043616e206f6e6c792060448201527f6465706f7369742062454947454e206f7220454947454e00000000000000000060648201526084016103f3565b6064546001600160a01b038381169116141561101f57606454604051636f074d1f60e11b8152600481018390526001600160a01b039091169063de0e9a3e90602401600060405180830381600087803b15801561100657600080fd5b505af115801561101a573d6000803e3d6000fd5b505050505b5050565b6032546040516370a0823160e01b81523060048201526000916001600160a01b0316906370a0823190602401602060405180830381865afa15801561106c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061109091906119a1565b905090565b600054610100900460ff166111005760405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b60648201526084016103f3565b603280546001600160a01b0319166001600160a01b03841617905561101f8160006112c2565b6032546001600160a01b038381169116148061114f57506064546001600160a01b038381169116145b6107b95760405162461bcd60e51b815260206004820152603960248201527f456967656e53747261746567792e77697468647261773a2043616e206f6e6c7960448201527f2077697468647261772062454947454e206f7220454947454e0000000000000060648201526084016103f3565b6064546001600160a01b03838116911614156112ae5760325460405163095ea7b360e01b81526001600160a01b038481166004830152602482018490529091169063095ea7b3906044016020604051808303816000875af115801561122a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061124e9190611863565b50606454604051630ea598cb60e41b8152600481018390526001600160a01b039091169063ea598cb090602401600060405180830381600087803b15801561129557600080fd5b505af11580156112a9573d6000803e3d6000fd5b505050505b6107b96001600160a01b03831684836113ae565b6000546201000090046001600160a01b03161580156112e957506001600160a01b03821615155b61136b5760405162461bcd60e51b815260206004820152604760248201527f5061757361626c652e5f696e697469616c697a655061757365723a205f696e6960448201527f7469616c697a6550617573657228292063616e206f6e6c792062652063616c6c6064820152666564206f6e636560c81b608482015260a4016103f3565b600181905560405181815233907fab40a374bc51de372200a8bc981af8c9ecdc08dfdaef0bb6e09f88f3c616ef3d9060200160405180910390a261101f82610e0a565b604080516001600160a01b03848116602483015260448083018590528351808403909101815260649092018352602080830180516001600160e01b031663a9059cbb60e01b17905283518085019094528084527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564908401526107b99286929160009161143e9185169084906114bb565b8051909150156107b9578080602001905181019061145c9190611863565b6107b95760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b60648201526084016103f3565b60606114ca84846000856114d4565b90505b9392505050565b6060824710156115355760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b60648201526084016103f3565b6001600160a01b0385163b61158c5760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e747261637400000060448201526064016103f3565b600080866001600160a01b031685876040516115a891906119ba565b60006040518083038185875af1925050503d80600081146115e5576040519150601f19603f3d011682016040523d82523d6000602084013e6115ea565b606091505b50915091506115fa828286611605565b979650505050505050565b606083156116145750816114cd565b8251156116245782518084602001fd5b8160405162461bcd60e51b81526004016103f3919061173d565b6001600160a01b038116811461040557600080fd5b60006020828403121561166557600080fd5b81356114cd8161163e565b60006020828403121561168257600080fd5b5035919050565b6000806040838503121561169c57600080fd5b82356116a78161163e565b946020939093013593505050565b600080604083850312156116c857600080fd5b82356116d38161163e565b915060208301356116e38161163e565b809150509250929050565b60006020828403121561170057600080fd5b813560ff811681146114cd57600080fd5b60005b8381101561172c578181015183820152602001611714565b83811115610a065750506000910152565b602081526000825180602084015261175c816040850160208701611711565b601f01601f19169190910160400192915050565b60008060006060848603121561178557600080fd5b83356117908161163e565b925060208401356117a08161163e565b915060408401356117b08161163e565b809150509250925092565b6000806000606084860312156117d057600080fd5b83356117db8161163e565b925060208401356117eb8161163e565b929592945050506040919091013590565b60006020828403121561180e57600080fd5b81516114cd8161163e565b6020808252602a908201527f6d73672e73656e646572206973206e6f74207065726d697373696f6e6564206160408201526939903ab73830bab9b2b960b11b606082015260800190565b60006020828403121561187557600080fd5b815180151581146114cd57600080fd5b60208082526028908201527f6d73672e73656e646572206973206e6f74207065726d697373696f6e6564206160408201526739903830bab9b2b960c11b606082015260800190565b634e487b7160e01b600052601160045260246000fd5b600082198211156118f6576118f66118cd565b500190565b60008282101561190d5761190d6118cd565b500390565b600081600019048311821515161561192c5761192c6118cd565b500290565b60008261194e57634e487b7160e01b600052601260045260246000fd5b500490565b6020808252602e908201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160408201526d191e481a5b9a5d1a585b1a5e995960921b606082015260800190565b6000602082840312156119b357600080fd5b5051919050565b600082516119cc818460208701611711565b919091019291505056fe4261736520537472617465677920696d706c656d656e746174696f6e20746f20696e68657269742066726f6d20666f72206d6f726520636f6d706c657820696d706c656d656e746174696f6e73a2646970667358221220ceaf39104b709be8f2f67d60b8de64817b73d0f32176967bb60943024b27678064736f6c634300080c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000dfb5f6ce42aaa7830e94ecfccad411bef4d4d5b6
-----Decoded View---------------
Arg [0] : _strategyManager (address): 0xdfB5f6CE42aAA7830E94ECFCcAd411beF4d4D5b6
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000dfb5f6ce42aaa7830e94ecfccad411bef4d4d5b6
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.