Source Code
Overview
ETH Balance
0 ETH
More Info
ContractCreator
Multichain Info
N/A
Latest 25 from a total of 55 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Opt In | 2850572 | 38 hrs ago | IN | 0 ETH | 0.00010355 | ||||
Opt In | 2850356 | 39 hrs ago | IN | 0 ETH | 0.00000435 | ||||
Opt In | 2836214 | 3 days ago | IN | 0 ETH | 0.00031067 | ||||
Opt In | 2830776 | 4 days ago | IN | 0 ETH | 0.00000253 | ||||
Opt In | 2830689 | 4 days ago | IN | 0 ETH | 0.00031067 | ||||
Opt In | 2826338 | 5 days ago | IN | 0 ETH | 0.00000845 | ||||
Opt In | 2825354 | 5 days ago | IN | 0 ETH | 0.0000028 | ||||
Opt In | 2825062 | 5 days ago | IN | 0 ETH | 0.0000123 | ||||
Opt In | 2824492 | 5 days ago | IN | 0 ETH | 0.00031067 | ||||
Opt In | 2820097 | 6 days ago | IN | 0 ETH | 0.00000889 | ||||
Opt In | 2816037 | 6 days ago | IN | 0 ETH | 0.00001201 | ||||
Opt In | 2816033 | 6 days ago | IN | 0 ETH | 0.00001201 | ||||
Opt In | 2816031 | 6 days ago | IN | 0 ETH | 0.00001201 | ||||
Opt In | 2815748 | 7 days ago | IN | 0 ETH | 0.00001276 | ||||
Opt In | 2813655 | 7 days ago | IN | 0 ETH | 0.00001244 | ||||
Opt In | 2813652 | 7 days ago | IN | 0 ETH | 0.00000994 | ||||
Opt In | 2813642 | 7 days ago | IN | 0 ETH | 0.00000994 | ||||
Opt In | 2812199 | 7 days ago | IN | 0 ETH | 0.00000332 | ||||
Opt In | 2806090 | 8 days ago | IN | 0 ETH | 0.00001905 | ||||
Opt In | 2805826 | 8 days ago | IN | 0 ETH | 0.00001983 | ||||
Opt In | 2805769 | 8 days ago | IN | 0 ETH | 0.00001687 | ||||
Opt In | 2791012 | 10 days ago | IN | 0 ETH | 0.00000974 | ||||
Opt In | 2791006 | 10 days ago | IN | 0 ETH | 0.00000974 | ||||
Opt In | 2789387 | 10 days ago | IN | 0 ETH | 0.00001534 | ||||
Opt In | 2789364 | 10 days ago | IN | 0 ETH | 0.00001534 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
OptInService
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; import {StaticDelegateCallable} from "../common/StaticDelegateCallable.sol"; import {IOptInService} from "../../interfaces/service/IOptInService.sol"; import {IRegistry} from "../../interfaces/common/IRegistry.sol"; import {Checkpoints} from "../libraries/Checkpoints.sol"; import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; import {Time} from "@openzeppelin/contracts/utils/types/Time.sol"; contract OptInService is StaticDelegateCallable, EIP712, IOptInService { using Checkpoints for Checkpoints.Trace208; /** * @inheritdoc IOptInService */ address public immutable WHO_REGISTRY; /** * @inheritdoc IOptInService */ address public immutable WHERE_REGISTRY; bytes32 private constant OPT_IN_TYPEHASH = keccak256("OptIn(address who,address where,uint256 nonce,uint48 deadline)"); bytes32 private constant OPT_OUT_TYPEHASH = keccak256("OptOut(address who,address where,uint256 nonce,uint48 deadline)"); /** * @inheritdoc IOptInService */ mapping(address who => mapping(address where => uint256 nonce)) public nonces; mapping(address who => mapping(address where => Checkpoints.Trace208 value)) internal _isOptedIn; modifier checkDeadline( uint48 deadline ) { if (deadline < Time.timestamp()) { revert ExpiredSignature(); } _; } constructor(address whoRegistry, address whereRegistry, string memory name) EIP712(name, "1") { WHO_REGISTRY = whoRegistry; WHERE_REGISTRY = whereRegistry; } /** * @inheritdoc IOptInService */ function isOptedInAt( address who, address where, uint48 timestamp, bytes calldata hint ) external view returns (bool) { return _isOptedIn[who][where].upperLookupRecent(timestamp, hint) == 1; } /** * @inheritdoc IOptInService */ function isOptedIn(address who, address where) public view returns (bool) { return _isOptedIn[who][where].latest() == 1; } /** * @inheritdoc IOptInService */ function optIn( address where ) external { _optIn(msg.sender, where); } /** * @inheritdoc IOptInService */ function optIn( address who, address where, uint48 deadline, bytes calldata signature ) external checkDeadline(deadline) { if (!SignatureChecker.isValidSignatureNow(who, _hash(true, who, where, deadline), signature)) { revert InvalidSignature(); } _optIn(who, where); } /** * @inheritdoc IOptInService */ function optOut( address where ) external { _optOut(msg.sender, where); } /** * @inheritdoc IOptInService */ function optOut( address who, address where, uint48 deadline, bytes calldata signature ) external checkDeadline(deadline) { if (!SignatureChecker.isValidSignatureNow(who, _hash(false, who, where, deadline), signature)) { revert InvalidSignature(); } _optOut(who, where); } /** * @inheritdoc IOptInService */ function increaseNonce( address where ) external { _increaseNonce(msg.sender, where); } function _optIn(address who, address where) internal { if (!IRegistry(WHO_REGISTRY).isEntity(who)) { revert NotWho(); } if (!IRegistry(WHERE_REGISTRY).isEntity(where)) { revert NotWhereEntity(); } if (isOptedIn(who, where)) { revert AlreadyOptedIn(); } _isOptedIn[who][where].push(Time.timestamp(), 1); _increaseNonce(who, where); emit OptIn(who, where); } function _optOut(address who, address where) internal { (, uint48 latestTimestamp, uint208 latestValue) = _isOptedIn[who][where].latestCheckpoint(); if (latestValue == 0) { revert NotOptedIn(); } if (latestTimestamp == Time.timestamp()) { revert OptOutCooldown(); } _isOptedIn[who][where].push(Time.timestamp(), 0); _increaseNonce(who, where); emit OptOut(who, where); } function _hash(bool ifOptIn, address who, address where, uint48 deadline) internal view returns (bytes32) { return _hashTypedDataV4( keccak256( abi.encode(ifOptIn ? OPT_IN_TYPEHASH : OPT_OUT_TYPEHASH, who, where, nonces[who][where], deadline) ) ); } function _increaseNonce(address who, address where) internal { unchecked { ++nonces[who][where]; } emit IncreaseNonce(who, where); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; import {IStaticDelegateCallable} from "../../interfaces/common/IStaticDelegateCallable.sol"; abstract contract StaticDelegateCallable is IStaticDelegateCallable { /** * @inheritdoc IStaticDelegateCallable */ function staticDelegateCall(address target, bytes calldata data) external { (bool success, bytes memory returndata) = target.delegatecall(data); bytes memory revertData = abi.encode(success, returndata); assembly { revert(add(32, revertData), mload(revertData)) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IOptInService { error AlreadyOptedIn(); error ExpiredSignature(); error InvalidSignature(); error NotOptedIn(); error NotWhereEntity(); error NotWho(); error OptOutCooldown(); /** * @notice Emitted when a "who" opts into a "where" entity. * @param who address of the "who" * @param where address of the "where" entity */ event OptIn(address indexed who, address indexed where); /** * @notice Emitted when a "who" opts out from a "where" entity. * @param who address of the "who" * @param where address of the "where" entity */ event OptOut(address indexed who, address indexed where); /** * @notice Emitted when the nonce of a "who" to a "where" entity is increased. * @param who address of the "who" * @param where address of the "where" entity */ event IncreaseNonce(address indexed who, address indexed where); /** * @notice Get the "who" registry's address. * @return address of the "who" registry */ function WHO_REGISTRY() external view returns (address); /** * @notice Get the address of the registry where to opt-in. * @return address of the "where" registry */ function WHERE_REGISTRY() external view returns (address); /** * @notice Get if a given "who" is opted-in to a particular "where" entity at a given timestamp using a hint. * @param who address of the "who" * @param where address of the "where" entity * @param timestamp time point to get if the "who" is opted-in at * @param hint hint for the checkpoint index * @return if the "who" is opted-in at the given timestamp */ function isOptedInAt( address who, address where, uint48 timestamp, bytes calldata hint ) external view returns (bool); /** * @notice Check if a given "who" is opted-in to a particular "where" entity. * @param who address of the "who" * @param where address of the "where" entity * @return if the "who" is opted-in */ function isOptedIn(address who, address where) external view returns (bool); /** * @notice Get the nonce of a given "who" to a particular "where" entity. * @param who address of the "who" * @param where address of the "where" entity * @return nonce */ function nonces(address who, address where) external view returns (uint256); /** * @notice Opt-in a calling "who" to a particular "where" entity. * @param where address of the "where" entity */ function optIn( address where ) external; /** * @notice Opt-in a "who" to a particular "where" entity with a signature. * @param who address of the "who" * @param where address of the "where" entity * @param deadline time point until the signature is valid (inclusively) * @param signature signature of the "who" */ function optIn(address who, address where, uint48 deadline, bytes calldata signature) external; /** * @notice Opt-out a calling "who" from a particular "where" entity. * @param where address of the "where" entity */ function optOut( address where ) external; /** * @notice Opt-out a "who" from a particular "where" entity with a signature. * @param who address of the "who" * @param where address of the "where" entity * @param deadline time point until the signature is valid (inclusively) * @param signature signature of the "who" */ function optOut(address who, address where, uint48 deadline, bytes calldata signature) external; /** * @notice Increase the nonce of a given "who" to a particular "where" entity. * @param where address of the "where" entity * @dev It can be used to invalidate a given signature. */ function increaseNonce( address where ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IRegistry { error EntityNotExist(); /** * @notice Emitted when an entity is added. * @param entity address of the added entity */ event AddEntity(address indexed entity); /** * @notice Get if a given address is an entity. * @param account address to check * @return if the given address is an entity */ function isEntity( address account ) external view returns (bool); /** * @notice Get a total number of entities. * @return total number of entities added */ function totalEntities() external view returns (uint256); /** * @notice Get an entity given its index. * @param index index of the entity to get * @return address of the entity */ function entity( uint256 index ) external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {Checkpoints as OZCheckpoints} from "@openzeppelin/contracts/utils/structs/Checkpoints.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; /** * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in * time, and later looking up past values by key. */ library Checkpoints { using OZCheckpoints for OZCheckpoints.Trace208; error SystemCheckpoint(); struct Trace208 { OZCheckpoints.Trace208 _trace; } struct Checkpoint208 { uint48 _key; uint208 _value; } struct Trace256 { OZCheckpoints.Trace208 _trace; uint256[] _values; } struct Checkpoint256 { uint48 _key; uint256 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint. * * Returns previous value and new value. */ function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) { return self._trace.push(key, value); } /** * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero * if there is none. */ function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) { return self._trace.upperLookupRecent(key); } /** * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookupRecent} that can be optimized by getting the hint * (index of the checkpoint with a key lower or equal than the search key). */ function upperLookupRecent(Trace208 storage self, uint48 key, bytes memory hint_) internal view returns (uint208) { if (hint_.length == 0) { return upperLookupRecent(self, key); } uint32 hint = abi.decode(hint_, (uint32)); Checkpoint208 memory checkpoint = at(self, hint); if (checkpoint._key == key) { return checkpoint._value; } if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) { return checkpoint._value; } return upperLookupRecent(self, key); } /** * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty), * and if so the key and value in the checkpoint, and its position in the trace. */ function upperLookupRecentCheckpoint( Trace208 storage self, uint48 key ) internal view returns (bool, uint48, uint208, uint32) { uint256 len = self._trace._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._trace._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._trace._checkpoints, key, low, high); if (pos == 0) { return (false, 0, 0, 0); } OZCheckpoints.Checkpoint208 memory checkpoint = _unsafeAccess(self._trace._checkpoints, pos - 1); return (true, checkpoint._key, checkpoint._value, uint32(pos - 1)); } /** * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty), * and if so the key and value in the checkpoint, and its position in the trace. * * NOTE: This is a variant of {upperLookupRecentCheckpoint} that can be optimized by getting the hint * (index of the checkpoint with a key lower or equal than the search key). */ function upperLookupRecentCheckpoint( Trace208 storage self, uint48 key, bytes memory hint_ ) internal view returns (bool, uint48, uint208, uint32) { if (hint_.length == 0) { return upperLookupRecentCheckpoint(self, key); } uint32 hint = abi.decode(hint_, (uint32)); Checkpoint208 memory checkpoint = at(self, hint); if (checkpoint._key == key) { return (true, checkpoint._key, checkpoint._value, hint); } if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) { return (true, checkpoint._key, checkpoint._value, hint); } return upperLookupRecentCheckpoint(self, key); } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest( Trace208 storage self ) internal view returns (uint208) { return self._trace.latest(); } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint( Trace208 storage self ) internal view returns (bool, uint48, uint208) { return self._trace.latestCheckpoint(); } /** * @dev Returns a total number of checkpoints. */ function length( Trace208 storage self ) internal view returns (uint256) { return self._trace.length(); } /** * @dev Returns checkpoint at a given position. */ function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) { OZCheckpoints.Checkpoint208 memory checkpoint = self._trace.at(pos); return Checkpoint208({_key: checkpoint._key, _value: checkpoint._value}); } /** * @dev Pops the last (most recent) checkpoint. */ function pop( Trace208 storage self ) internal returns (uint208 value) { value = self._trace.latest(); self._trace._checkpoints.pop(); } /** * @dev Pushes a (`key`, `value`) pair into a Trace256 so that it is stored as the checkpoint. * * Returns previous value and new value. */ function push(Trace256 storage self, uint48 key, uint256 value) internal returns (uint256, uint256) { if (self._values.length == 0) { self._values.push(0); } (bool exists, uint48 lastKey,) = self._trace.latestCheckpoint(); uint256 len = self._values.length; uint256 lastValue = latest(self); if (exists && key == lastKey) { self._values[len - 1] = value; } else { self._trace.push(key, uint208(len)); self._values.push(value); } return (lastValue, value); } /** * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero * if there is none. */ function upperLookupRecent(Trace256 storage self, uint48 key) internal view returns (uint256) { uint208 idx = self._trace.upperLookupRecent(key); return idx > 0 ? self._values[idx] : 0; } /** * @dev Returns the value in the last (most recent) checkpoint with a key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookupRecent} that can be optimized by getting the hint * (index of the checkpoint with a key lower or equal than the search key). */ function upperLookupRecent(Trace256 storage self, uint48 key, bytes memory hint_) internal view returns (uint256) { if (hint_.length == 0) { return upperLookupRecent(self, key); } uint32 hint = abi.decode(hint_, (uint32)); Checkpoint256 memory checkpoint = at(self, hint); if (checkpoint._key == key) { return checkpoint._value; } if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) { return checkpoint._value; } return upperLookupRecent(self, key); } /** * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty), * and if so the key and value in the checkpoint, and its position in the trace. */ function upperLookupRecentCheckpoint( Trace256 storage self, uint48 key ) internal view returns (bool, uint48, uint256, uint32) { uint256 len = self._trace._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._trace._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._trace._checkpoints, key, low, high); if (pos == 0) { return (false, 0, 0, 0); } OZCheckpoints.Checkpoint208 memory checkpoint = _unsafeAccess(self._trace._checkpoints, pos - 1); return (true, checkpoint._key, self._values[checkpoint._value], uint32(pos - 1)); } /** * @dev Returns whether there is a checkpoint with a key lower or equal than the search key in the structure (i.e. it is not empty), * and if so the key and value in the checkpoint, and its position in the trace. * * NOTE: This is a variant of {upperLookupRecentCheckpoint} that can be optimized by getting the hint * (index of the checkpoint with a key lower or equal than the search key). */ function upperLookupRecentCheckpoint( Trace256 storage self, uint48 key, bytes memory hint_ ) internal view returns (bool, uint48, uint256, uint32) { if (hint_.length == 0) { return upperLookupRecentCheckpoint(self, key); } uint32 hint = abi.decode(hint_, (uint32)); Checkpoint256 memory checkpoint = at(self, hint); if (checkpoint._key == key) { return (true, checkpoint._key, checkpoint._value, hint); } if (checkpoint._key < key && (hint == length(self) - 1 || at(self, hint + 1)._key > key)) { return (true, checkpoint._key, checkpoint._value, hint); } return upperLookupRecentCheckpoint(self, key); } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest( Trace256 storage self ) internal view returns (uint256) { uint208 idx = self._trace.latest(); return idx > 0 ? self._values[idx] : 0; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint( Trace256 storage self ) internal view returns (bool exists, uint48 _key, uint256 _value) { uint256 idx; (exists, _key, idx) = self._trace.latestCheckpoint(); _value = exists ? self._values[idx] : 0; } /** * @dev Returns a total number of checkpoints. */ function length( Trace256 storage self ) internal view returns (uint256) { return self._trace.length(); } /** * @dev Returns checkpoint at a given position. */ function at(Trace256 storage self, uint32 pos) internal view returns (Checkpoint256 memory) { OZCheckpoints.Checkpoint208 memory checkpoint = self._trace.at(pos); return Checkpoint256({_key: checkpoint._key, _value: self._values[checkpoint._value]}); } /** * @dev Pops the last (most recent) checkpoint. */ function pop( Trace256 storage self ) internal returns (uint256 value) { uint208 idx = self._trace.latest(); if (idx == 0) { revert SystemCheckpoint(); } value = self._values[idx]; self._trace._checkpoints.pop(); self._values.pop(); } /** * @dev Return the index of the last (most recent) checkpoint with a key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( OZCheckpoints.Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Access an element of the array without performing a bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( OZCheckpoints.Checkpoint208[] storage self, uint256 pos ) private pure returns (OZCheckpoints.Checkpoint208 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.20; import {ECDSA} from "./ECDSA.sol"; import {IERC1271} from "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like * Argent and Safe Wallet (previously Gnosis Safe). */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { (address recovered, ECDSA.RecoverError error, ) = ECDSA.tryRecover(hash, signature); return (error == ECDSA.RecoverError.NoError && recovered == signer) || isValidERC1271SignatureNow(signer, hash, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeCall(IERC1271.isValidSignature, (hash, signature)) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IStaticDelegateCallable { /** * @notice Make a delegatecall from this contract to a given target contract with a particular data (always reverts with a return data). * @param target address of the contract to make a delegatecall to * @param data data to make a delegatecall with * @dev It allows to use this contract's storage on-chain. */ function staticDelegateCall(address target, bytes calldata data) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol) // This file was procedurally generated from scripts/generate/templates/Checkpoints.js. pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; /** * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in * time, and later looking up past values by block number. See {Votes} as an example. * * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new * checkpoint for the current transaction block using the {push} function. */ library Checkpoints { /** * @dev A value was attempted to be inserted on a past checkpoint. */ error CheckpointUnorderedInsertion(); struct Trace224 { Checkpoint224[] _checkpoints; } struct Checkpoint224 { uint32 _key; uint224 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the * library. */ function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace224 storage self) internal view returns (uint224) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace224 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint224 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint224({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint224({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint224[] storage self, uint256 pos ) private pure returns (Checkpoint224 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace208 { Checkpoint208[] _checkpoints; } struct Checkpoint208 { uint48 _key; uint208 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the * library. */ function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace208 storage self) internal view returns (uint208) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace208 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint208 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint208({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint208({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint208[] storage self, uint256 pos ) private pure returns (Checkpoint208 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace160 { Checkpoint160[] _checkpoints; } struct Checkpoint160 { uint96 _key; uint160 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the * library. */ function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace160 storage self) internal view returns (uint160) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace160 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) { uint256 pos = self.length; if (pos > 0) { // Copying to memory is important here. Checkpoint160 memory last = _unsafeAccess(self, pos - 1); // Checkpoint keys must be non-decreasing. if (last._key > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (last._key == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint160({_key: key, _value: value})); } return (last._value, value); } else { self.push(Checkpoint160({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint160[] storage self, uint256 pos ) private pure returns (Checkpoint160 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); /// @solidity memory-safe-assembly assembly { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1271.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "forge-std/=lib/forge-std/src/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"whoRegistry","type":"address"},{"internalType":"address","name":"whereRegistry","type":"address"},{"internalType":"string","name":"name","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyOptedIn","type":"error"},{"inputs":[],"name":"CheckpointUnorderedInsertion","type":"error"},{"inputs":[],"name":"ExpiredSignature","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"NotOptedIn","type":"error"},{"inputs":[],"name":"NotWhereEntity","type":"error"},{"inputs":[],"name":"NotWho","type":"error"},{"inputs":[],"name":"OptOutCooldown","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"who","type":"address"},{"indexed":true,"internalType":"address","name":"where","type":"address"}],"name":"IncreaseNonce","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"who","type":"address"},{"indexed":true,"internalType":"address","name":"where","type":"address"}],"name":"OptIn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"who","type":"address"},{"indexed":true,"internalType":"address","name":"where","type":"address"}],"name":"OptOut","type":"event"},{"inputs":[],"name":"WHERE_REGISTRY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WHO_REGISTRY","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"where","type":"address"}],"name":"increaseNonce","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"who","type":"address"},{"internalType":"address","name":"where","type":"address"}],"name":"isOptedIn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"who","type":"address"},{"internalType":"address","name":"where","type":"address"},{"internalType":"uint48","name":"timestamp","type":"uint48"},{"internalType":"bytes","name":"hint","type":"bytes"}],"name":"isOptedInAt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"who","type":"address"},{"internalType":"address","name":"where","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"nonce","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"where","type":"address"}],"name":"optIn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"who","type":"address"},{"internalType":"address","name":"where","type":"address"},{"internalType":"uint48","name":"deadline","type":"uint48"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"optIn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"who","type":"address"},{"internalType":"address","name":"where","type":"address"},{"internalType":"uint48","name":"deadline","type":"uint48"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"optOut","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"where","type":"address"}],"name":"optOut","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"staticDelegateCall","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6101a0604090808252346101de57611d3f803803809161001f82856101e3565b833981016060828203126101de5761003682610206565b6020610043818501610206565b848601516001600160401b03959194918682116101de57019181601f840112156101de578251928684116101c857875193610087601f8201601f19168401866101e3565b808552828501938382840101116101de5783836100a4930161021a565b865190878201828110888211176101c857885260018252808201603160f81b81526100ce8561023d565b936101209485526100de846103dd565b95610140968752519020928360e0525190209761010098808a524660a0528151928301937f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f85528284015260608301524660808301523060a083015260a0825260c0820197828910908911176101c8578790525190206080523060c0526101609283526101809384526118269586610519873960805186611291015260a0518661134c015260c0518661125b015260e051866112e001525185611306015251846103050152518361032f01525182818161060d0152610c870152518181816102570152610cdb0152f35b634e487b7160e01b600052604160045260246000fd5b600080fd5b601f909101601f19168101906001600160401b038211908210176101c857604052565b51906001600160a01b03821682036101de57565b60005b83811061022d5750506000910152565b818101518382015260200161021d565b805160209190828110156102b8575090601f825111610278578082519201519080831061026957501790565b82600019910360031b1b161790565b6044906102aa9260405193849263305a27a960e01b84528060048501528251928391826024870152868601910161021a565b601f01601f19168101030190fd5b6001600160401b0381116101c8576000928354926001938481811c911680156103d3575b838210146103bf57601f811161038c575b5081601f84116001146103295750928293918392869461031e575b50501b916000199060031b1c191617905560ff90565b015192503880610308565b919083601f1981168780528488209488905b888383106103725750505010610359575b505050811b01905560ff90565b015160001960f88460031b161c1916905538808061034c565b85870151885590960195948501948793509081019061033b565b85805284601f848820920160051c820191601f860160051c015b8281106103b45750506102ed565b8781550185906103a6565b634e487b7160e01b86526022600452602486fd5b90607f16906102dc565b8051602090818110156104075750601f825111610278578082519201519080831061026957501790565b9192916001600160401b0381116101c85760019182548381811c9116801561050e575b828210146104f857601f81116104c2575b5080601f831160011461047857508192939460009261046d575b5050600019600383901b1c191690821b17905560ff90565b015190503880610455565b90601f198316958460005282600020926000905b8882106104ab575050838596971061035957505050811b01905560ff90565b80878596829496860151815501950193019061048c565b8360005283601f83600020920160051c820191601f850160051c015b8281106104ec57505061043b565b600081550184906104de565b634e487b7160e01b600052602260045260246000fd5b90607f169061042a56fe6080604052600436101561001257600080fd5b60003560e01c8063220d32d4146100d7578063530e1d43146100d25780636d0fae4a146100cd5780638247a97c146100c857806384b0196e146100c35780639333fbda146100be57806393f79bc3146100b95780639f86fd85146100b4578063b1138ad1146100af578063c4b5d62c146100aa578063ced44ba7146100a55763d4610483146100a057600080fd5b610704565b61063c565b6105f7565b6105d5565b610543565b610440565b6103e8565b6102ea565b610286565b610241565b6101d7565b61010d565b600435906001600160a01b03821682036100f257565b600080fd5b602435906001600160a01b03821682036100f257565b346100f25760403660031901126100f257602061013961012b6100dc565b6101336100f7565b90610726565b6040519015158152f35b9181601f840112156100f25782359167ffffffffffffffff83116100f257602083818601950101116100f257565b9060806003198301126100f2576001600160a01b039160043583811681036100f2579260243590811681036100f2579160443565ffffffffffff811681036100f257916064359067ffffffffffffffff82116100f2576101d391600401610143565b9091565b346100f257602060016102316102376102226101f236610171565b969290949193888060a01b03166000526003895260406000209060018060a01b0316600052602052604060002090565b92868060d01b03953691610848565b91610905565b1614604051908152f35b346100f25760003660031901126100f2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346100f25760203660031901126100f2576102a86102a26100dc565b33610a01565b005b919082519283825260005b8481106102d6575050826000602080949584010152601f8019910116010190565b6020818301810151848301820152016102b5565b346100f2576000806003193601126103e557610388906103297f0000000000000000000000000000000000000000000000000000000000000000610e7e565b906103537f0000000000000000000000000000000000000000000000000000000000000000610f81565b9060405191610361836107c3565b818352610396602091604051968796600f60f81b885260e0602089015260e08801906102aa565b9086820360408801526102aa565b904660608601523060808601528260a086015284820360c0860152602080855193848152019401925b8281106103ce57505050500390f35b8351855286955093810193928101926001016103bf565b80fd5b346100f25760403660031901126100f25760206104376104066100dc565b61040e6100f7565b6001600160a01b0391821660009081526002855260408082209290931681526020919091522090565b54604051908152f35b346100f25761044e36610171565b909165ffffffffffff806104614261104f565b169116908110610531576105119261050261050a9260018060a01b03808916918260005260026020526104aa8960406000209060018060a01b0316600052602052604060002090565b546040519260208401947f7830334d17a05ab8aeca8f1778e27182208fc2d454ac7b38a4edc2069ee3a4a6865260408501528a166060840152608083015260a082015260a081526104fa816107df565b519020611081565b923691610848565b9084610a58565b1561051f576102a891610b37565b604051638baa579f60e01b8152600490fd5b60405163df4cc36d60e01b8152600490fd5b346100f25760403660031901126100f25761055c6100dc565b60243567ffffffffffffffff81116100f25760009161058083923690600401610143565b90816040519283928337810184815203915af46105cd61059e61087f565b916105bf6040519384921515602084015260408084015260608301906102aa565b03601f1981018352826107fb565b805190602001fd5b346100f25760203660031901126100f2576102a86105f16100dc565b33610c5b565b346100f25760003660031901126100f2576040517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b346100f25761064a36610171565b909165ffffffffffff8061065d4261104f565b169116908110610531576106f69261050261050a9260018060a01b03808916918260005260026020526106a68960406000209060018060a01b0316600052602052604060002090565b546040519260208401947f6ab5200f1123a8d51d1695a9e5e757267926b53c6359f90b8873cc7dcc30ea2c865260408501528a166060840152608083015260a082015260a081526104fa816107df565b1561051f576102a891610c5b565b346100f25760203660031901126100f2576102a86107206100dc565b33610b37565b6001600160a01b0390811660009081526003602090815260408083209490931682529290925281208054806107665750506001905b818060d01b03161490565b6000199181838101116107875783602091600195522001015460301c61075b565b6108cb565b634e487b7160e01b600052604160045260246000fd5b6040810190811067ffffffffffffffff8211176107be57604052565b61078c565b6020810190811067ffffffffffffffff8211176107be57604052565b60c0810190811067ffffffffffffffff8211176107be57604052565b90601f8019910116810190811067ffffffffffffffff8211176107be57604052565b6040519061082a826107a2565b565b67ffffffffffffffff81116107be57601f01601f191660200190565b9291926108548261082c565b9161086260405193846107fb565b8294818452818301116100f2578281602093846000960137010152565b3d156108aa573d906108908261082c565b9161089e60405193846107fb565b82523d6000602084013e565b606090565b908160209103126100f2575163ffffffff811681036100f25790565b634e487b7160e01b600052601160045260246000fd5b60001981019190821161078757565b90600163ffffffff8093160191821161078757565b918051156109f75780602080610920935183010191016108af565b9161092b8382610e2a565b9261093c845165ffffffffffff1690565b9065ffffffffffff80851692168281146109de578211918261097e575b505061096c5761096992506110f1565b90565b5050602001516001600160d01b031690565b90915061098b83546108e1565b63ffffffff8316149182156109a4575b50503880610959565b6109d69192506109bf6109b96109cb926108f0565b85610e2a565b5165ffffffffffff1690565b65ffffffffffff1690565b11388061099b565b50505050602091909101516001600160d01b0316905090565b50610969916110f1565b6001600160a01b0390811660008181526002602090815260408083209590941680835294905291822080546001019055907f8ed32926585579e6191b145240df788165f4957e1135f30a00e08ee8feb9d6809080a3565b610a6283836110a7565b506004819592951015610b2157159384610b0b575b508315610a85575b50505090565b6000929350908291604051610abe816105bf6020820194630b135d3f60e11b998a875260248401526040604484015260648301906102aa565b51915afa90610acb61087f565b82610afd575b82610ae1575b5050388080610a7f565b9091506020818051810103126100f25760200151143880610ad7565b915060208251101591610ad1565b6001600160a01b03838116911614935038610a77565b634e487b7160e01b600052602160045260246000fd5b90610b77610b7282610b5b8560018060a01b03166000526003602052604060002090565b9060018060a01b0316600052602052604060002090565b6113f6565b9091506001600160d01b031615610c255765ffffffffffff80610b994261104f565b16911614610c1357610bd3610bc482610b5b8560018060a01b03166000526003602052604060002090565b610bcd4261104f565b9061160e565b5050610bdf8183610a01565b6001600160a01b0390811691167f1629cd9ad365627cf8408d19c50224af8f3213c1a18ae48062d92e22bddf7de5600080a3565b60405163291bf4b760e21b8152600490fd5b6040516334b09b3960e11b8152600490fd5b908160209103126100f2575180151581036100f25790565b6040513d6000823e3d90fd5b6040516302910f8b60e31b8082526001600160a01b0383811660048401529293916020919082816024817f000000000000000000000000000000000000000000000000000000000000000089165afa908115610ddd57600091610df4575b5015610de2576040519081526001600160a01b038316600482015281816024817f000000000000000000000000000000000000000000000000000000000000000088165afa918215610ddd57600092610db0575b505015610d9e57610d1e8184610726565b610d8c5780610d56610d478493610b5b8760018060a01b03166000526003602052604060002090565b610d504261104f565b90611714565b5050610d628185610a01565b1691167f9b730d5b907ee509de729817a2bb37e404418ba569b3a50f36192372f973cb41600080a3565b60405163dcdeaba360e01b8152600490fd5b6040516321f5408d60e01b8152600490fd5b610dcf9250803d10610dd6575b610dc781836107fb565b810190610c37565b3880610d0d565b503d610dbd565b610c4f565b604051630fb9ff9560e41b8152600490fd5b610e0b9150833d8511610dd657610dc781836107fb565b38610cb9565b60405190610e1e826107a2565b60006020838281520152565b610e4f91610e4991610e3a610e11565b50610e43610e11565b506111da565b50611208565b65ffffffffffff81511690602060018060d01b039101511660405191610e74836107a2565b8252602082015290565b60ff8114610e8f576109699061122c565b50604051600080549060018260011c9260018116918215610f77575b602091602086108414610f6357858752869493602086019392918115610f445750600114610ee3575b505050610969925003826107fb565b925093610f11600080527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56390565b946000935b828510610f2e57505050610969935001388080610ed4565b8654858501529586019587955093810193610f16565b925050506109699491925060ff19168252151560051b01388080610ed4565b634e487b7160e01b85526022600452602485fd5b93607f1693610eab565b60ff8114610f92576109699061122c565b506040516001805480821c91600091808216918215611045575b602091602086108414610f6357858752869493602086019392918115610f445750600114610fe357505050610969925003826107fb565b92509361101260016000527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf690565b946000935b82851061102f57505050610969935001388080610ed4565b8654858501529586019587955093810193611017565b93607f1693610fac565b65ffffffffffff90818111611062571690565b604490604051906306dfcc6560e41b8252603060048301526024820152fd5b60429061108c611258565b906040519161190160f01b8352600283015260228201522090565b81519190604183036110d8576110d192506020820151906060604084015193015160001a90611372565b9192909190565b505060009160029190565b906001820180921161078757565b90815490600091806005811161118e575b50915b82811061113e5750508061111a575050600090565b6109699161112a611137926108e1565b9060005260206000200190565b5460301c90565b90918082169080831860011c8201809211610787578460005265ffffffffffff808360206000200154169085161060001461117c5750915b90611105565b929150611188906110e3565b90611176565b906111988261146b565b8203918211610787578460005265ffffffffffff80836020600020015416908416106000146111c957505b38611102565b92506111d4906110e3565b916111c3565b80548210156111f25760005260206000200190600090565b634e487b7160e01b600052603260045260246000fd5b90604051611215816107a2565b915465ffffffffffff8116835260301c6020830152565b60ff811690601f82116112465760405191610e74836107a2565b604051632cd44ac360e21b8152600490fd5b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480611349575b156112b3577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a08152611343816107df565b51902090565b507f0000000000000000000000000000000000000000000000000000000000000000461461128a565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084116113ea57926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa15610ddd5780516001600160a01b038116156113e157918190565b50809160019190565b50505060009160039190565b80548061140a575050600090600090600090565b6000199080828101116107875761142a9260005260206000200101611208565b9065ffffffffffff82511691602060018060d01b0391015116906001929190565b8115611455570490565b634e487b7160e01b600052601260045260246000fd5b80156115a5578061153e61153761152d61152361151961150f6115056114fb60016109699a6000908b60801c80611599575b508060401c8061158c575b508060201c8061157f575b508060101c80611572575b508060081c80611565575b508060041c80611558575b508060021c8061154b575b50821c611544575b811c1b6114f4818b61144b565b0160011c90565b6114f4818a61144b565b6114f4818961144b565b6114f4818861144b565b6114f4818761144b565b6114f4818661144b565b6114f4818561144b565b809261144b565b906117de565b81016114e7565b60029150910190386114df565b60049150910190386114d4565b60089150910190386114c9565b60109150910190386114be565b60209150910190386114b3565b60409150910190386114a8565b9150506080903861149d565b50600090565b8054680100000000000000008110156107be576115cd916001820181556111da565b9190916115f857805160209091015160301b65ffffffffffff191665ffffffffffff91909116179055565b634e487b7160e01b600052600060045260246000fd5b80549081156116ef57611638611633611626846108e1565b8360005260206000200190565b611208565b90611649825165ffffffffffff1690565b65ffffffffffff85811694911684106116dd576116a8946020946116766109cb865165ffffffffffff1690565b036116ae575061169a9161112a61168c926108e1565b65ffffffffffff8154169055565b01516001600160d01b031690565b90600090565b90506116d8916116cd6116bf61081d565b65ffffffffffff9093168352565b6000858301526115ab565b61169a565b604051632520601d60e01b8152600490fd5b61170c9291506117006116bf61081d565b600060208301526115ab565b600090600090565b80549081156117b95761172c611633611626846108e1565b9061173d825165ffffffffffff1690565b65ffffffffffff85811694911684106116dd576117979460209461176a6109cb865165ffffffffffff1690565b0361179d575061169a9161112a611780926108e1565b660100000000000065ffffffffffff825416179055565b90600190565b90506116d8916117ae6116bf61081d565b6001828601526115ab565b6117d69291506117ca6116bf61081d565b600160208301526115ab565b600090600190565b90808210156117eb575090565b90509056fea2646970667358221220042608a47ed6696db6fcc02a2b1ea0f6f27b5aadfda1517331c7429083341bc064736f6c634300081900330000000000000000000000006f75a4fff97326a00e52662d82ea4fde86a2c548000000000000000000000000407a039d94948484d356efb765b3c74382a050b4000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000194f70657261746f725661756c744f7074496e5365727669636500000000000000
Deployed Bytecode
0x6080604052600436101561001257600080fd5b60003560e01c8063220d32d4146100d7578063530e1d43146100d25780636d0fae4a146100cd5780638247a97c146100c857806384b0196e146100c35780639333fbda146100be57806393f79bc3146100b95780639f86fd85146100b4578063b1138ad1146100af578063c4b5d62c146100aa578063ced44ba7146100a55763d4610483146100a057600080fd5b610704565b61063c565b6105f7565b6105d5565b610543565b610440565b6103e8565b6102ea565b610286565b610241565b6101d7565b61010d565b600435906001600160a01b03821682036100f257565b600080fd5b602435906001600160a01b03821682036100f257565b346100f25760403660031901126100f257602061013961012b6100dc565b6101336100f7565b90610726565b6040519015158152f35b9181601f840112156100f25782359167ffffffffffffffff83116100f257602083818601950101116100f257565b9060806003198301126100f2576001600160a01b039160043583811681036100f2579260243590811681036100f2579160443565ffffffffffff811681036100f257916064359067ffffffffffffffff82116100f2576101d391600401610143565b9091565b346100f257602060016102316102376102226101f236610171565b969290949193888060a01b03166000526003895260406000209060018060a01b0316600052602052604060002090565b92868060d01b03953691610848565b91610905565b1614604051908152f35b346100f25760003660031901126100f2576040517f000000000000000000000000407a039d94948484d356efb765b3c74382a050b46001600160a01b03168152602090f35b346100f25760203660031901126100f2576102a86102a26100dc565b33610a01565b005b919082519283825260005b8481106102d6575050826000602080949584010152601f8019910116010190565b6020818301810151848301820152016102b5565b346100f2576000806003193601126103e557610388906103297f4f70657261746f725661756c744f7074496e5365727669636500000000000019610e7e565b906103537f3100000000000000000000000000000000000000000000000000000000000001610f81565b9060405191610361836107c3565b818352610396602091604051968796600f60f81b885260e0602089015260e08801906102aa565b9086820360408801526102aa565b904660608601523060808601528260a086015284820360c0860152602080855193848152019401925b8281106103ce57505050500390f35b8351855286955093810193928101926001016103bf565b80fd5b346100f25760403660031901126100f25760206104376104066100dc565b61040e6100f7565b6001600160a01b0391821660009081526002855260408082209290931681526020919091522090565b54604051908152f35b346100f25761044e36610171565b909165ffffffffffff806104614261104f565b169116908110610531576105119261050261050a9260018060a01b03808916918260005260026020526104aa8960406000209060018060a01b0316600052602052604060002090565b546040519260208401947f7830334d17a05ab8aeca8f1778e27182208fc2d454ac7b38a4edc2069ee3a4a6865260408501528a166060840152608083015260a082015260a081526104fa816107df565b519020611081565b923691610848565b9084610a58565b1561051f576102a891610b37565b604051638baa579f60e01b8152600490fd5b60405163df4cc36d60e01b8152600490fd5b346100f25760403660031901126100f25761055c6100dc565b60243567ffffffffffffffff81116100f25760009161058083923690600401610143565b90816040519283928337810184815203915af46105cd61059e61087f565b916105bf6040519384921515602084015260408084015260608301906102aa565b03601f1981018352826107fb565b805190602001fd5b346100f25760203660031901126100f2576102a86105f16100dc565b33610c5b565b346100f25760003660031901126100f2576040517f0000000000000000000000006f75a4fff97326a00e52662d82ea4fde86a2c5486001600160a01b03168152602090f35b346100f25761064a36610171565b909165ffffffffffff8061065d4261104f565b169116908110610531576106f69261050261050a9260018060a01b03808916918260005260026020526106a68960406000209060018060a01b0316600052602052604060002090565b546040519260208401947f6ab5200f1123a8d51d1695a9e5e757267926b53c6359f90b8873cc7dcc30ea2c865260408501528a166060840152608083015260a082015260a081526104fa816107df565b1561051f576102a891610c5b565b346100f25760203660031901126100f2576102a86107206100dc565b33610b37565b6001600160a01b0390811660009081526003602090815260408083209490931682529290925281208054806107665750506001905b818060d01b03161490565b6000199181838101116107875783602091600195522001015460301c61075b565b6108cb565b634e487b7160e01b600052604160045260246000fd5b6040810190811067ffffffffffffffff8211176107be57604052565b61078c565b6020810190811067ffffffffffffffff8211176107be57604052565b60c0810190811067ffffffffffffffff8211176107be57604052565b90601f8019910116810190811067ffffffffffffffff8211176107be57604052565b6040519061082a826107a2565b565b67ffffffffffffffff81116107be57601f01601f191660200190565b9291926108548261082c565b9161086260405193846107fb565b8294818452818301116100f2578281602093846000960137010152565b3d156108aa573d906108908261082c565b9161089e60405193846107fb565b82523d6000602084013e565b606090565b908160209103126100f2575163ffffffff811681036100f25790565b634e487b7160e01b600052601160045260246000fd5b60001981019190821161078757565b90600163ffffffff8093160191821161078757565b918051156109f75780602080610920935183010191016108af565b9161092b8382610e2a565b9261093c845165ffffffffffff1690565b9065ffffffffffff80851692168281146109de578211918261097e575b505061096c5761096992506110f1565b90565b5050602001516001600160d01b031690565b90915061098b83546108e1565b63ffffffff8316149182156109a4575b50503880610959565b6109d69192506109bf6109b96109cb926108f0565b85610e2a565b5165ffffffffffff1690565b65ffffffffffff1690565b11388061099b565b50505050602091909101516001600160d01b0316905090565b50610969916110f1565b6001600160a01b0390811660008181526002602090815260408083209590941680835294905291822080546001019055907f8ed32926585579e6191b145240df788165f4957e1135f30a00e08ee8feb9d6809080a3565b610a6283836110a7565b506004819592951015610b2157159384610b0b575b508315610a85575b50505090565b6000929350908291604051610abe816105bf6020820194630b135d3f60e11b998a875260248401526040604484015260648301906102aa565b51915afa90610acb61087f565b82610afd575b82610ae1575b5050388080610a7f565b9091506020818051810103126100f25760200151143880610ad7565b915060208251101591610ad1565b6001600160a01b03838116911614935038610a77565b634e487b7160e01b600052602160045260246000fd5b90610b77610b7282610b5b8560018060a01b03166000526003602052604060002090565b9060018060a01b0316600052602052604060002090565b6113f6565b9091506001600160d01b031615610c255765ffffffffffff80610b994261104f565b16911614610c1357610bd3610bc482610b5b8560018060a01b03166000526003602052604060002090565b610bcd4261104f565b9061160e565b5050610bdf8183610a01565b6001600160a01b0390811691167f1629cd9ad365627cf8408d19c50224af8f3213c1a18ae48062d92e22bddf7de5600080a3565b60405163291bf4b760e21b8152600490fd5b6040516334b09b3960e11b8152600490fd5b908160209103126100f2575180151581036100f25790565b6040513d6000823e3d90fd5b6040516302910f8b60e31b8082526001600160a01b0383811660048401529293916020919082816024817f0000000000000000000000006f75a4fff97326a00e52662d82ea4fde86a2c54889165afa908115610ddd57600091610df4575b5015610de2576040519081526001600160a01b038316600482015281816024817f000000000000000000000000407a039d94948484d356efb765b3c74382a050b488165afa918215610ddd57600092610db0575b505015610d9e57610d1e8184610726565b610d8c5780610d56610d478493610b5b8760018060a01b03166000526003602052604060002090565b610d504261104f565b90611714565b5050610d628185610a01565b1691167f9b730d5b907ee509de729817a2bb37e404418ba569b3a50f36192372f973cb41600080a3565b60405163dcdeaba360e01b8152600490fd5b6040516321f5408d60e01b8152600490fd5b610dcf9250803d10610dd6575b610dc781836107fb565b810190610c37565b3880610d0d565b503d610dbd565b610c4f565b604051630fb9ff9560e41b8152600490fd5b610e0b9150833d8511610dd657610dc781836107fb565b38610cb9565b60405190610e1e826107a2565b60006020838281520152565b610e4f91610e4991610e3a610e11565b50610e43610e11565b506111da565b50611208565b65ffffffffffff81511690602060018060d01b039101511660405191610e74836107a2565b8252602082015290565b60ff8114610e8f576109699061122c565b50604051600080549060018260011c9260018116918215610f77575b602091602086108414610f6357858752869493602086019392918115610f445750600114610ee3575b505050610969925003826107fb565b925093610f11600080527f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e56390565b946000935b828510610f2e57505050610969935001388080610ed4565b8654858501529586019587955093810193610f16565b925050506109699491925060ff19168252151560051b01388080610ed4565b634e487b7160e01b85526022600452602485fd5b93607f1693610eab565b60ff8114610f92576109699061122c565b506040516001805480821c91600091808216918215611045575b602091602086108414610f6357858752869493602086019392918115610f445750600114610fe357505050610969925003826107fb565b92509361101260016000527fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf690565b946000935b82851061102f57505050610969935001388080610ed4565b8654858501529586019587955093810193611017565b93607f1693610fac565b65ffffffffffff90818111611062571690565b604490604051906306dfcc6560e41b8252603060048301526024820152fd5b60429061108c611258565b906040519161190160f01b8352600283015260228201522090565b81519190604183036110d8576110d192506020820151906060604084015193015160001a90611372565b9192909190565b505060009160029190565b906001820180921161078757565b90815490600091806005811161118e575b50915b82811061113e5750508061111a575050600090565b6109699161112a611137926108e1565b9060005260206000200190565b5460301c90565b90918082169080831860011c8201809211610787578460005265ffffffffffff808360206000200154169085161060001461117c5750915b90611105565b929150611188906110e3565b90611176565b906111988261146b565b8203918211610787578460005265ffffffffffff80836020600020015416908416106000146111c957505b38611102565b92506111d4906110e3565b916111c3565b80548210156111f25760005260206000200190600090565b634e487b7160e01b600052603260045260246000fd5b90604051611215816107a2565b915465ffffffffffff8116835260301c6020830152565b60ff811690601f82116112465760405191610e74836107a2565b604051632cd44ac360e21b8152600490fd5b307f00000000000000000000000095cc0a052ae33941877c9619835a233d21d573516001600160a01b03161480611349575b156112b3577f2f9f231b8107eb7f98ca25a9928847220ee76277e4252d4364def0a42c757b0090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f1c23a44724db4dbcba0e5bb16be893c2bef2c54068ecad9dcf41f8035b64d58960408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a08152611343816107df565b51902090565b507f0000000000000000000000000000000000000000000000000000000000004268461461128a565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084116113ea57926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa15610ddd5780516001600160a01b038116156113e157918190565b50809160019190565b50505060009160039190565b80548061140a575050600090600090600090565b6000199080828101116107875761142a9260005260206000200101611208565b9065ffffffffffff82511691602060018060d01b0391015116906001929190565b8115611455570490565b634e487b7160e01b600052601260045260246000fd5b80156115a5578061153e61153761152d61152361151961150f6115056114fb60016109699a6000908b60801c80611599575b508060401c8061158c575b508060201c8061157f575b508060101c80611572575b508060081c80611565575b508060041c80611558575b508060021c8061154b575b50821c611544575b811c1b6114f4818b61144b565b0160011c90565b6114f4818a61144b565b6114f4818961144b565b6114f4818861144b565b6114f4818761144b565b6114f4818661144b565b6114f4818561144b565b809261144b565b906117de565b81016114e7565b60029150910190386114df565b60049150910190386114d4565b60089150910190386114c9565b60109150910190386114be565b60209150910190386114b3565b60409150910190386114a8565b9150506080903861149d565b50600090565b8054680100000000000000008110156107be576115cd916001820181556111da565b9190916115f857805160209091015160301b65ffffffffffff191665ffffffffffff91909116179055565b634e487b7160e01b600052600060045260246000fd5b80549081156116ef57611638611633611626846108e1565b8360005260206000200190565b611208565b90611649825165ffffffffffff1690565b65ffffffffffff85811694911684106116dd576116a8946020946116766109cb865165ffffffffffff1690565b036116ae575061169a9161112a61168c926108e1565b65ffffffffffff8154169055565b01516001600160d01b031690565b90600090565b90506116d8916116cd6116bf61081d565b65ffffffffffff9093168352565b6000858301526115ab565b61169a565b604051632520601d60e01b8152600490fd5b61170c9291506117006116bf61081d565b600060208301526115ab565b600090600090565b80549081156117b95761172c611633611626846108e1565b9061173d825165ffffffffffff1690565b65ffffffffffff85811694911684106116dd576117979460209461176a6109cb865165ffffffffffff1690565b0361179d575061169a9161112a611780926108e1565b660100000000000065ffffffffffff825416179055565b90600190565b90506116d8916117ae6116bf61081d565b6001828601526115ab565b6117d69291506117ca6116bf61081d565b600160208301526115ab565b600090600190565b90808210156117eb575090565b90509056fea2646970667358221220042608a47ed6696db6fcc02a2b1ea0f6f27b5aadfda1517331c7429083341bc064736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006f75a4fff97326a00e52662d82ea4fde86a2c548000000000000000000000000407a039d94948484d356efb765b3c74382a050b4000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000194f70657261746f725661756c744f7074496e5365727669636500000000000000
-----Decoded View---------------
Arg [0] : whoRegistry (address): 0x6F75a4ffF97326A00e52662d82EA4FdE86a2C548
Arg [1] : whereRegistry (address): 0x407A039D94948484D356eFB765b3c74382A050B4
Arg [2] : name (string): OperatorVaultOptInService
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000006f75a4fff97326a00e52662d82ea4fde86a2c548
Arg [1] : 000000000000000000000000407a039d94948484d356efb765b3c74382a050b4
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000019
Arg [4] : 4f70657261746f725661756c744f7074496e5365727669636500000000000000
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.